IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29824-1.html
   My bibliography  Save this article

Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer

Author

Listed:
  • Martina Troiani

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    Swiss Institute of Bioinformatics, TI)

  • Manuel Colucci

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    University of Lausanne UNIL)

  • Mariantonietta D’Ambrosio

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    University of Lausanne UNIL)

  • Ilaria Guccini

    (ETH Zurich)

  • Emiliano Pasquini

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Angelica Varesi

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Aurora Valdata

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Simone Mosole

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Ajinkya Revandkar

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    Massachusetts General Hospital Cancer Center, Harvard Medical School)

  • Giuseppe Attanasio

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Andrea Rinaldi

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana)

  • Anna Rinaldi

    (Ente Ospedaliero Cantonale
    Ente Ospedaliero Cantonale)

  • Marco Bolis

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    Swiss Institute of Bioinformatics, TI
    Istituto di Ricerche Farmacologiche ‘Mario Negri’ IRCCS)

  • Pietro Cippà

    (Ente Ospedaliero Cantonale
    Ente Ospedaliero Cantonale)

  • Andrea Alimonti

    (Oncology Institute of Southern Switzerland (IOSI)
    Università della Svizzera Italiana
    Department of Health Sciences and Technology (D-HEST) ETH Zurich
    Department of Medicine & Veneto Institute of Molecular Medicine, University of Padova)

Abstract

Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy. Here, using single-cell RNA-sequencing, we find that senescent tumor cells rely on the anti-apoptotic gene Mcl-1 for their survival. Mcl-1 is upregulated in senescent tumor cells, including cells expressing low levels of Bcl-2, an established target for senolytic therapy. While treatment with the Bcl-2 inhibitor Navitoclax results in the reduction of metastases in tumor bearing mice, treatment with the Mcl-1 inhibitor S63845 leads to complete elimination of senescent tumor cells and metastases. These findings provide insights on the mechanism by which senescent tumor cells survive and reveal a vulnerability that can be exploited for cancer therapy.

Suggested Citation

  • Martina Troiani & Manuel Colucci & Mariantonietta D’Ambrosio & Ilaria Guccini & Emiliano Pasquini & Angelica Varesi & Aurora Valdata & Simone Mosole & Ajinkya Revandkar & Giuseppe Attanasio & Andrea R, 2022. "Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29824-1
    DOI: 10.1038/s41467-022-29824-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29824-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29824-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adriana E. Tron & Matthew A. Belmonte & Ammar Adam & Brian M. Aquila & Lawrence H. Boise & Elisabetta Chiarparin & Justin Cidado & Kevin J. Embrey & Eric Gangl & Francis D. Gibbons & Gareth P. Gregory, 2018. "Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Arianna Calcinotto & Clarissa Spataro & Elena Zagato & Diletta Di Mitri & Veronica Gil & Mateus Crespo & Gaston De Bernardis & Marco Losa & Michela Mirenda & Emiliano Pasquini & Andrea Rinaldi & Semin, 2018. "IL-23 secreted by myeloid cells drives castration-resistant prostate cancer," Nature, Nature, vol. 559(7714), pages 363-369, July.
    3. Joanna Kaplon & Liang Zheng & Katrin Meissl & Barbara Chaneton & Vitaly A. Selivanov & Gillian Mackay & Sjoerd H. van der Burg & Elizabeth M. E. Verdegaal & Marta Cascante & Tomer Shlomi & Eyal Gottli, 2013. "A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence," Nature, Nature, vol. 498(7452), pages 109-112, June.
    4. András Kotschy & Zoltán Szlavik & James Murray & James Davidson & Ana Leticia Maragno & Gaëtane Le Toumelin-Braizat & Maïa Chanrion & Gemma L. Kelly & Jia-Nan Gong & Donia M. Moujalled & Alain Bruno &, 2016. "The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models," Nature, Nature, vol. 538(7626), pages 477-482, October.
    5. Megan Scudellari, 2017. "To stay young, kill zombie cells," Nature, Nature, vol. 550(7677), pages 448-450, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Lopez & Denis E. Reyna & Nadege Gitego & Felix Kopp & Hua Zhou & Miguel A. Miranda-Roman & Lars Ulrik Nordstrøm & Swathi-Rao Narayanagari & Ping Chi & Eduardo Vilar & Aristotelis Tsirigos & Evr, 2022. "Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Jaskaren Kohli & Chen Ge & Eleni Fitsiou & Miriam Doepner & Simone M. Brandenburg & William J. Faller & Todd W. Ridky & Marco Demaria, 2022. "Targeting anti-apoptotic pathways eliminates senescent melanocytes and leads to nevi regression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ella N. Hoogenboezem & Shrusti S. Patel & Justin H. Lo & Ashley B. Cavnar & Lauren M. Babb & Nora Francini & Eva F. Gbur & Prarthana Patil & Juan M. Colazo & Danielle L. Michell & Violeta M. Sanchez &, 2024. "Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Peng Liao & Long Chen & Hao Zhou & Jiong Mei & Ziming Chen & Bingqi Wang & Jerry Q. Feng & Guangyi Li & Sihan Tong & Jian Zhou & Siyuan Zhu & Yu Qian & Yao Zong & Weiguo Zou & Hao Li & Wenkan Zhang & , 2024. "Osteocyte mitochondria regulate angiogenesis of transcortical vessels," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Lauriane Galle-Treger & Doumet Georges Helou & Christine Quach & Emily Howard & Benjamin P. Hurrell & German R. Aleman Muench & Pedram Shafiei-Jahani & Jacob D. Painter & Andrea Iorga & Lily Dara & Ju, 2022. "Autophagy impairment in liver CD11c+ cells promotes non-alcoholic fatty liver disease through production of IL-23," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Yexuan Deng & Sarah T. Diepstraten & Margaret A. Potts & Göknur Giner & Stephanie Trezise & Ashley P. Ng & Gerry Healey & Serena R. Kane & Amali Cooray & Kira Behrens & Amy Heidersbach & Andrew J. Kue, 2022. "Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Ni Li & Qiuli Liu & Ying Han & Siyu Pei & Bisheng Cheng & Junyu Xu & Xiang Miao & Qiang Pan & Hanling Wang & Jiacheng Guo & Xuege Wang & Guoying Zhang & Yannan Lian & Wei Zhang & Yi Zang & Minjia Tan , 2022. "ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Florian J. Bock & Egor Sedov & Elle Koren & Anna L. Koessinger & Catherine Cloix & Désirée Zerbst & Dimitris Athineos & Jayanthi Anand & Kirsteen J. Campbell & Karen Blyth & Yaron Fuchs & Stephen W. G, 2021. "Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Yinsheng Wu & Lixu Tang & Han Huang & Qi Yu & Bicheng Hu & Gang Wang & Feng Ge & Tailang Yin & Shanshan Li & Xilan Yu, 2023. "Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Marco Bolis & Daniela Bossi & Arianna Vallerga & Valentina Ceserani & Manuela Cavalli & Daniela Impellizzieri & Laura Di Rito & Eugenio Zoni & Simone Mosole & Angela Rita Elia & Andrea Rinaldi & Ricar, 2021. "Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. Jessica Ebner & Johannes Schmoellerl & Martin Piontek & Gabriele Manhart & Selina Troester & Bing Z. Carter & Heidi Neubauer & Richard Moriggl & Gergely Szakács & Johannes Zuber & Thomas Köcher & Mich, 2023. "ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Shunsuke Tsuzuki & Shotaro Nakanishi & Mitsuyoshi Tamaki & Takuma Oshiro & Jun Miki & Hiroki Yamada & Tatsuya Shimomura & Takahiro Kimura & Nozomu Furuta & Seiichi Saito & Shin Egawa, 2021. "Initial dose reduction of enzalutamide does not decrease the incidence of adverse events in castration-resistant prostate cancer," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-10, October.
    13. Dongwen Lv & Pratik Pal & Xingui Liu & Yannan Jia & Dinesh Thummuri & Peiyi Zhang & Wanyi Hu & Jing Pei & Qi Zhang & Shuo Zhou & Sajid Khan & Xuan Zhang & Nan Hua & Qingping Yang & Sebastian Arango & , 2021. "Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. Nader Al-Nakouzi & Chris Kedong Wang & Htoo Zarni Oo & Irina Nelepcu & Nada Lallous & Charlotte B. Spliid & Nastaran Khazamipour & Joey Lo & Sarah Truong & Colin Collins & Desmond Hui & Shaghayegh Esf, 2022. "Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Bhavana Palakurthi & Shaneann R. Fross & Ian H. Guldner & Emilija Aleksandrovic & Xiyu Liu & Anna K. Martino & Qingfei Wang & Ryan A. Neff & Samantha M. Golomb & Cheryl Lewis & Yan Peng & Erin N. Howe, 2023. "Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29824-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.