IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62629-6.html
   My bibliography  Save this article

Patient-derived tumoroids from CIC::DUX4 rearranged sarcoma identify MCL1 as a therapeutic target

Author

Listed:
  • Willemijn Breunis

    (University of Zurich)

  • Eva Brack

    (Bern University Hospital)

  • Anna C. Ehlers

    (Hopp-Children’s Cancer Center (KiTZ)
    German Cancer Consortium (DKTK)
    a partnership between DKFZ and Heidelberg University Hospital
    Ruprecht-Karls-University)

  • Ingrid Bechtold

    (University of Zurich)

  • Samanta Kisele

    (University of Zurich)

  • Jakob Wurth

    (University of Zurich)

  • Lieke Mous

    (University of Zurich (UZH))

  • Dorita Zabele

    (University of Zurich (UZH))

  • Fabio Steffen

    (University of Zurich)

  • Felina Zahnow

    (Hopp-Children’s Cancer Center (KiTZ))

  • Christian Britschgi

    (Comprehensive Cancer Center Zurich
    Cantonal Hospital Winterthur)

  • Lorenz Bankel

    (Comprehensive Cancer Center Zurich)

  • Christian Rothermundt

    (Cantonal Hospital St. Gallen)

  • Cornelia Vetter

    (Children’s Hospital of Eastern Switzerland)

  • Daniel Müller

    (University of Zurich)

  • Sander Botter

    (Balgrist Campus AG)

  • Chantal Pauli

    (University Hospital Zurich)

  • Peter Bode

    (University Hospital Zurich)

  • Beate Rinner

    (Medical University of Graz)

  • Jean-Pierre Bourquin

    (University of Zurich)

  • Jochen Roessler

    (Bern University Hospital)

  • Thomas G. P. Grünewald

    (Hopp-Children’s Cancer Center (KiTZ)
    German Cancer Consortium (DKTK)
    a partnership between DKFZ and Heidelberg University Hospital
    Heidelberg University Hospital)

  • Beat W. Schäfer

    (University of Zurich)

  • Didier Surdez

    (University of Zurich (UZH))

  • Marco Wachtel

    (University of Zurich)

Abstract

High-risk sarcomas, such as metastatic and relapsed Ewing and CIC-rearranged sarcoma, still have a poor prognosis despite intensive therapeutic regimens. Precision medicine approaches offer hope, and ex vivo drug response profiling of patient-derived tumor cells emerges as a promising tool to identify effective therapies for individual patients. Here, we establish ex vivo culture conditions to propagate Ewing sarcoma and CIC::DUX4 sarcoma as tumoroids. These models retain their original molecular and functional characteristics, including recurrent ARID1A mutations in CIC::DUX4 sarcoma, and serve as tumor avatars for large-scale drug testing. Screening a large drug library on a small living biobank of such tumors not only reveals distinct differences in drug response between the two entities, but also identifies a dependency of CIC::DUX4 sarcoma cells on MCL1. Mechanistically, MCL1 is identified as a direct transcriptional target of the CIC::DUX4 fusion oncogene. Genetic and pharmacological inhibition of MCL1 induces rapid apoptosis in CIC::DUX4 sarcoma cells and inhibits tumor growth in a xenograft model. Thus, MCL1 represents a potential therapeutic target for CIC::DUX4 sarcoma. Overall, our study highlights the feasibility of drug response profiling for individual sarcoma cases and suggests that further clinical assessments of its benefit are warranted.

Suggested Citation

  • Willemijn Breunis & Eva Brack & Anna C. Ehlers & Ingrid Bechtold & Samanta Kisele & Jakob Wurth & Lieke Mous & Dorita Zabele & Fabio Steffen & Felina Zahnow & Christian Britschgi & Lorenz Bankel & Chr, 2025. "Patient-derived tumoroids from CIC::DUX4 rearranged sarcoma identify MCL1 as a therapeutic target," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62629-6
    DOI: 10.1038/s41467-025-62629-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62629-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62629-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toshiro Sato & Robert G. Vries & Hugo J. Snippert & Marc van de Wetering & Nick Barker & Daniel E. Stange & Johan H. van Es & Arie Abo & Pekka Kujala & Peter J. Peters & Hans Clevers, 2009. "Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche," Nature, Nature, vol. 459(7244), pages 262-265, May.
    2. Christian Koelsche & Daniel Schrimpf & Damian Stichel & Martin Sill & Felix Sahm & David E. Reuss & Mirjam Blattner & Barbara Worst & Christoph E. Heilig & Katja Beck & Peter Horak & Simon Kreutzfeldt, 2021. "Sarcoma classification by DNA methylation profiling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Joseph T. Opferman & Anthony Letai & Caroline Beard & Mia D. Sorcinelli & Christy C. Ong & Stanley J. Korsmeyer, 2003. "Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1," Nature, Nature, vol. 426(6967), pages 671-676, December.
    4. András Kotschy & Zoltán Szlavik & James Murray & James Davidson & Ana Leticia Maragno & Gaëtane Le Toumelin-Braizat & Maïa Chanrion & Gemma L. Kelly & Jia-Nan Gong & Donia M. Moujalled & Alain Bruno &, 2016. "The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models," Nature, Nature, vol. 538(7626), pages 477-482, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kimman & Marta Cuenca & Ralph G. Tieland & Dedeke Rockx-Brouwer & Jasmijn Janssen & Benjamin Motais & Anne Slomp & Corine Pleijte & Sabine Heijhuurs & Angelo D. Meringa & Wendy Boschloo & Douwe, 2025. "Engineering anti-BCMA CAR T cells for enhancing myeloma killing efficacy via apoptosis regulation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Pushkal Sharma & Colin Y. Kim & Heather R. Keys & Shinya Imada & Alex B. Joseph & Luke Ferro & Tenzin Kunchok & Rachel Anderson & Yulin Sun & Ömer H. Yilmaz & Jing-Ke Weng & Ankur Jain, 2025. "Genetically encoded fluorescent reporter for polyamines," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Enara Larrañaga & Miquel Marin-Riera & Aina Abad-Lázaro & David Bartolomé-Català & Aitor Otero & Vanesa Fernández-Majada & Eduard Batlle & James Sharpe & Samuel Ojosnegros & Jordi Comelles & Elena Mar, 2025. "Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    4. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Andrea Lopez & Denis E. Reyna & Nadege Gitego & Felix Kopp & Hua Zhou & Miguel A. Miranda-Roman & Lars Ulrik Nordstrøm & Swathi-Rao Narayanagari & Ping Chi & Eduardo Vilar & Aristotelis Tsirigos & Evr, 2022. "Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Jaskaren Kohli & Chen Ge & Eleni Fitsiou & Miriam Doepner & Simone M. Brandenburg & William J. Faller & Todd W. Ridky & Marco Demaria, 2022. "Targeting anti-apoptotic pathways eliminates senescent melanocytes and leads to nevi regression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Shuting Li & Chia-Wen Lu & Elia C. Diem & Wang Li & Melanie Guderian & Marc Lindenberg & Friederike Kruse & Manuela Buettner & Stefan Floess & Markus R. Winny & Robert Geffers & Hans-Hermann Richnow &, 2022. "Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Hannah R. Hrncir & Brianna Goodloe & Sergei Bombin & Connor B. Hogan & Othmane Jadi & Adam D. Gracz, 2025. "Sox9 inhibits Activin A to promote biliary maturation and branching morphogenesis," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    9. Ella N. Hoogenboezem & Shrusti S. Patel & Justin H. Lo & Ashley B. Cavnar & Lauren M. Babb & Nora Francini & Eva F. Gbur & Prarthana Patil & Juan M. Colazo & Danielle L. Michell & Violeta M. Sanchez &, 2024. "Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Cezanne Miete & Gonzalo P. Solis & Alexey Koval & Martina Brückner & Vladimir L. Katanaev & Jürgen Behrens & Dominic B. Bernkopf, 2022. "Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Weifan Lin & Wuheng Huang & Shiqiang Mei & Xiangwan Lu & Junheng Zheng & Hua Wang & Lingling Zheng & Yan Zhang, 2025. "Transdifferentiation of tongue muscle cells into cancer-associated fibroblasts in response to tongue squamous cell carcinoma," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    12. Anna Urciuolo & Giovanni Giuseppe Giobbe & Yixiao Dong & Federica Michielin & Luca Brandolino & Michael Magnussen & Onelia Gagliano & Giulia Selmin & Valentina Scattolini & Paolo Raffa & Paola Caccin , 2023. "Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Carlos Sebastian & Christina Ferrer & Maria Serra & Jee-Eun Choi & Nadia Ducano & Alessia Mira & Manasvi S. Shah & Sylwia A. Stopka & Andrew J. Perciaccante & Claudio Isella & Daniel Moya-Rull & Maria, 2022. "A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Nanase Igarashi & Kenichi Miyata & Tze Mun Loo & Masatomo Chiba & Aki Hanyu & Mika Nishio & Hiroko Kawasaki & Hao Zheng & Shinya Toyokuni & Shunsuke Kon & Keiji Moriyama & Yasuyuki Fujita & Akiko Taka, 2022. "Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Mara Martín-Alonso & Sharif Iqbal & Pia M. Vornewald & Håvard T. Lindholm & Mirjam J. Damen & Fernando Martínez & Sigrid Hoel & Alberto Díez-Sánchez & Maarten Altelaar & Pekka Katajisto & Alicia G. Ar, 2021. "Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    16. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Gustavo Medeiros & Raphael Ortiz & Petr Strnad & Andrea Boni & Franziska Moos & Nicole Repina & Ludivine Challet Meylan & Francisca Maurer & Prisca Liberali, 2022. "Multiscale light-sheet organoid imaging framework," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. I. F. Schene & I. P. Joore & J. H. L. Baijens & R. Stevelink & G. Kok & S. Shehata & E. F. Ilcken & E. C. M. Nieuwenhuis & D. P. Bolhuis & R. C. M. Rees & S. A. Spelier & H. P. J. Doef & J. M. Beekman, 2022. "Mutation-specific reporter for optimization and enrichment of prime editing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Philipp Jurmeister & Stefanie Glöß & Renée Roller & Maximilian Leitheiser & Simone Schmid & Liliana H. Mochmann & Emma Payá Capilla & Rebecca Fritz & Carsten Dittmayer & Corinna Friedrich & Anne Thiem, 2022. "DNA methylation-based classification of sinonasal tumors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Seonghyeon Park & Ohman Kwon & Hana Lee & Younghak Cho & Jemin Yeun & Sung Hyun Yoon & Sang Yu Sun & Yubin Huh & Won Dong Yu & Sohee Park & Naeun Son & Sojeong Jeon & Sugi Lee & Dae-Soo Kim & Sun Youn, 2024. "Xenogeneic-free culture of human intestinal stem cells on functional polymer-coated substrates for scalable, clinical-grade stem cell therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62629-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.