IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08507-4.html
   My bibliography  Save this article

Strain engineering in perovskite solar cells and its impacts on carrier dynamics

Author

Listed:
  • Cheng Zhu

    (Beijing Institute of Technology)

  • Xiuxiu Niu

    (Beijing Institute of Technology)

  • Yuhao Fu

    (Jilin University)

  • Nengxu Li

    (Peking University)

  • Chen Hu

    (The Hong Kong University of Science and Technology, Clear Water Bay)

  • Yihua Chen

    (Peking University)

  • Xin He

    (Jilin University)

  • Guangren Na

    (Jilin University)

  • Pengfei Liu

    (Beijing Institute of Technology)

  • Huachao Zai

    (China University of Petroleum)

  • Yang Ge

    (Beijing University of Technology)

  • Yue Lu

    (Beijing University of Technology)

  • Xiaoxing Ke

    (Beijing University of Technology)

  • Yang Bai

    (Beijing Institute of Technology)

  • Shihe Yang

    (The Hong Kong University of Science and Technology, Clear Water Bay
    Peking University)

  • Pengwan Chen

    (Beijing Institute of Technology)

  • Yujing Li

    (Beijing Institute of Technology)

  • Manling Sui

    (Beijing University of Technology)

  • Lijun Zhang

    (Jilin University)

  • Huanping Zhou

    (Peking University)

  • Qi Chen

    (Beijing Institute of Technology)

Abstract

The mixed halide perovskites have emerged as outstanding light absorbers for efficient solar cells. Unfortunately, it reveals inhomogeneity in these polycrystalline films due to composition separation, which leads to local lattice mismatches and emergent residual strains consequently. Thus far, the understanding of these residual strains and their effects on photovoltaic device performance is absent. Herein we study the evolution of residual strain over the films by depth-dependent grazing incident X-ray diffraction measurements. We identify the gradient distribution of in-plane strain component perpendicular to the substrate. Moreover, we reveal its impacts on the carrier dynamics over corresponding solar cells, which is stemmed from the strain induced energy bands bending of the perovskite absorber as indicated by first-principles calculations. Eventually, we modulate the status of residual strains in a controllable manner, which leads to enhanced PCEs up to 20.7% (certified) in devices via rational strain engineering.

Suggested Citation

  • Cheng Zhu & Xiuxiu Niu & Yuhao Fu & Nengxu Li & Chen Hu & Yihua Chen & Xin He & Guangren Na & Pengfei Liu & Huachao Zai & Yang Ge & Yue Lu & Xiaoxing Ke & Yang Bai & Shihe Yang & Pengwan Chen & Yujing, 2019. "Strain engineering in perovskite solar cells and its impacts on carrier dynamics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08507-4
    DOI: 10.1038/s41467-019-08507-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08507-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08507-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Zengqi Huang & Lin Li & Tingqing Wu & Tangyue Xue & Wei Sun & Qi Pan & Huadong Wang & Hongfei Xie & Jimei Chi & Teng Han & Xiaotian Hu & Meng Su & Yiwang Chen & Yanlin Song, 2023. "Wearable perovskite solar cells by aligned liquid crystal elastomers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    5. Tong Jin & Zheng Liu & Jiajun Luo & Jun-Hui Yuan & Hanqi Wang & Zuoxiang Xie & Weicheng Pan & Haodi Wu & Kan-Hao Xue & Linyue Liu & Zhanli Hu & Zhiping Zheng & Jiang Tang & Guangda Niu, 2023. "Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Xiaosong Chen & Zhongwu Wang & Jiannan Qi & Yongxu Hu & Yinan Huang & Shougang Sun & Yajing Sun & Wenbin Gong & Langli Luo & Lifeng Zhang & Haiyan Du & Xiaoxia Hu & Cheng Han & Jie Li & Deyang Ji & Li, 2022. "Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08507-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.