IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38545-y.html
   My bibliography  Save this article

Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection

Author

Listed:
  • Tong Jin

    (Huazhong University of Science and Technology)

  • Zheng Liu

    (Chinese Academy of Sciences)

  • Jiajun Luo

    (Huazhong University of Science and Technology)

  • Jun-Hui Yuan

    (Huazhong University of Science and Technology)

  • Hanqi Wang

    (Huazhong University of Science and Technology)

  • Zuoxiang Xie

    (Huazhong University of Science and Technology)

  • Weicheng Pan

    (Huazhong University of Science and Technology)

  • Haodi Wu

    (Huazhong University of Science and Technology)

  • Kan-Hao Xue

    (Huazhong University of Science and Technology)

  • Linyue Liu

    (Northwest Institute of Nuclear Technology)

  • Zhanli Hu

    (Chinese Academy of Sciences)

  • Zhiping Zheng

    (Huazhong University of Science and Technology)

  • Jiang Tang

    (Huazhong University of Science and Technology
    Optics Valley Laboratory)

  • Guangda Niu

    (Huazhong University of Science and Technology
    Optics Valley Laboratory)

Abstract

Lead halide perovskites have recently emerged as promising X/γ-ray scintillators. However, the small Stokes shift of exciton luminescence in perovskite scintillators creates problems for the light extraction efficiency and severely impedes their applications in hard X/γ-ray detection. Dopants have been used to shift the emission wavelength, but the radioluminescence lifetime has also been unwantedly extended. Herein, we demonstrate the intrinsic strain in 2D perovskite crystals as a general phenomenon, which could be utilized as self-wavelength shifting to reduce the self-absorption effect without sacrificing the radiation response speed. Furthermore, we successfully demonstrated the first imaging reconstruction by perovskites for application of positron emission tomography. The coincidence time resolution for the optimized perovskite single crystals (4 × 4 × 0.8 mm3) reached 119 ± 3 ps. This work provides a new paradigm for suppressing the self-absorption effect in scintillators and may facilitate the application of perovskite scintillators in practical hard X/γ-ray detections.

Suggested Citation

  • Tong Jin & Zheng Liu & Jiajun Luo & Jun-Hui Yuan & Hanqi Wang & Zuoxiang Xie & Weicheng Pan & Haodi Wu & Kan-Hao Xue & Linyue Liu & Zhanli Hu & Zhiping Zheng & Jiang Tang & Guangda Niu, 2023. "Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38545-y
    DOI: 10.1038/s41467-023-38545-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38545-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38545-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiushui Chen & Jing Wu & Xiangyu Ou & Bolong Huang & Jawaher Almutlaq & Ayan A. Zhumekenov & Xinwei Guan & Sanyang Han & Liangliang Liang & Zhigao Yi & Juan Li & Xiaoji Xie & Yu Wang & Ying Li & Diany, 2018. "All-inorganic perovskite nanocrystal scintillators," Nature, Nature, vol. 561(7721), pages 88-93, September.
    2. Cheng Zhu & Xiuxiu Niu & Yuhao Fu & Nengxu Li & Chen Hu & Yihua Chen & Xin He & Guangren Na & Pengfei Liu & Huachao Zai & Yang Ge & Yue Lu & Xiaoxing Ke & Yang Bai & Shihe Yang & Pengwan Chen & Yujing, 2019. "Strain engineering in perovskite solar cells and its impacts on carrier dynamics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    4. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. E. Kirstein & N. E. Kopteva & D. R. Yakovlev & E. A. Zhukov & E. V. Kolobkova & M. S. Kuznetsova & V. V. Belykh & I. A. Yugova & M. M. Glazov & M. Bayer & A. Greilich, 2023. "Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Yongan Feng & Jichuan Zhang & Weiguo Cao & Jiaheng Zhang & Jean’ne M. Shreeve, 2023. "A promising perovskite primary explosive," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zengqi Huang & Lin Li & Tingqing Wu & Tangyue Xue & Wei Sun & Qi Pan & Huadong Wang & Hongfei Xie & Jimei Chi & Teng Han & Xiaotian Hu & Meng Su & Yiwang Chen & Yanlin Song, 2023. "Wearable perovskite solar cells by aligned liquid crystal elastomers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Xiaosong Chen & Zhongwu Wang & Jiannan Qi & Yongxu Hu & Yinan Huang & Shougang Sun & Yajing Sun & Wenbin Gong & Langli Luo & Lifeng Zhang & Haiyan Du & Xiaoxia Hu & Cheng Han & Jie Li & Deyang Ji & Li, 2022. "Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Sujung Min & Hara Kang & Bumkyung Seo & JaeHak Cheong & Changhyun Roh & Sangbum Hong, 2021. "A Review of Nanomaterial Based Scintillators," Energies, MDPI, vol. 14(22), pages 1-43, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38545-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.