IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v6y2016i8d10.1038_nclimate2998.html
   My bibliography  Save this article

New use of global warming potentials to compare cumulative and short-lived climate pollutants

Author

Listed:
  • Myles R. Allen

    (Environmental Change Institute, School of Geography and the Environment, University of Oxford
    University of Oxford)

  • Jan S. Fuglestvedt

    (Center for International Climate and Environmental Research - Oslo (CICERO))

  • Keith P. Shine

    (University of Reading)

  • Andy Reisinger

    (New Zealand Agricultural Greenhouse Gas Research Centre)

  • Raymond T. Pierrehumbert

    (University of Oxford)

  • Piers M. Forster

    (School of Earth and Environment, Maths/Earth and Environment Building, The University of Leeds)

Abstract

This study presents a new use of a widely used metric known as the global warming potential (GWP) to compare the impact of cumulative climate pollutants such as CO2 versus short-lived climate pollutants, such as methane and black carbon.

Suggested Citation

  • Myles R. Allen & Jan S. Fuglestvedt & Keith P. Shine & Andy Reisinger & Raymond T. Pierrehumbert & Piers M. Forster, 2016. "New use of global warming potentials to compare cumulative and short-lived climate pollutants," Nature Climate Change, Nature, vol. 6(8), pages 773-776, August.
  • Handle: RePEc:nat:natcli:v:6:y:2016:i:8:d:10.1038_nclimate2998
    DOI: 10.1038/nclimate2998
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2998
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinichiro Asayama & Mike Hulme & Nils Markusson, 2021. "Balancing a budget or running a deficit? The offset regime of carbon removal and solar geoengineering under a carbon budget," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    2. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    3. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    4. Nicoletta Brazzola & Jan Wohland & Anthony Patt, 2021. "Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    5. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    6. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    7. Rautiainen, Aapo & Lintunen, Jussi, 2017. "Social Cost of Forcing: A Basis for Pricing All Forcing Agents," Ecological Economics, Elsevier, vol. 133(C), pages 42-51.
    8. Yue Wang & Imke J. M. Boer & U. Martin Persson & Raimon Ripoll-Bosch & Christel Cederberg & Pierre J. Gerber & Pete Smith & Corina E. Middelaar, 2023. "Risk to rely on soil carbon sequestration to offset global ruminant emissions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Dorman,Peter, 2022. "Alligators in the Arctic and How to Avoid Them," Cambridge Books, Cambridge University Press, number 9781316516270.
    10. Sonali Shukla McDermid & Matthew Hayek & Dale W. Jamieson & Galina Hale & David Kanter, 2023. "Research needs for a food system transition," Climatic Change, Springer, vol. 176(4), pages 1-15, April.
    11. Sylwia Szczęśniak & Łukasz Stefaniak, 2022. "Global Warming Potential of New Gaseous Refrigerants Used in Chillers in HVAC Systems," Energies, MDPI, vol. 15(16), pages 1-20, August.
    12. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2022. "Greenhouse Gas Emissions from Canadian Agriculture: Policies and Reduction Measures," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 15(13), May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:6:y:2016:i:8:d:10.1038_nclimate2998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.