IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v39y2020i1d10.1007_s11113-019-09533-2.html
   My bibliography  Save this article

Using Multiple Methods to Provide Prediction Bands of K-12 Enrollment Projections

Author

Listed:
  • Richard S. Grip

    (Statistical Forecasting LLC)

  • Meghan L. Grip

    (University of Rochester)

Abstract

Often, demographers charged with projecting enrollments for school districts are asked to provide a range of future enrollments, as point estimates are not satisfactory to stakeholders. Three New Jersey school districts in varying populations sizes (small, medium, and large) were used to project enrollments 5 years into the future. Prediction bands were created using empirically-based methods, whereby confidence intervals were constructed, and by model-based methods, which utilizes stochastic forecasting. While stochastic forecasting is typically used in projecting the population of large geographies such as states or countries, it has rarely been used for a small level of geography such as a school district. The results showed that confidence intervals may have limited utility in projecting an enrollment range for larger districts, particularly in the short term (1–2 years). Prediction intervals using stochastic forecasting have limited utility in school district projections, regardless of school district size, as the prediction bands are too wide to allow for any meaningful use of the data.

Suggested Citation

  • Richard S. Grip & Meghan L. Grip, 2020. "Using Multiple Methods to Provide Prediction Bands of K-12 Enrollment Projections," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 39(1), pages 1-22, February.
  • Handle: RePEc:kap:poprpr:v:39:y:2020:i:1:d:10.1007_s11113-019-09533-2
    DOI: 10.1007/s11113-019-09533-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11113-019-09533-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-019-09533-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    2. Alho, Juha M., 1990. "Stochastic methods in population forecasting," International Journal of Forecasting, Elsevier, vol. 6(4), pages 521-530, December.
    3. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    4. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    5. Pflaumer, Peter, 1988. "Confidence intervals for population projections based on Monte Carlo methods," International Journal of Forecasting, Elsevier, vol. 4(1), pages 135-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    2. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    3. Tom Wilson & Huw Brokensha & Francisco Rowe & Ludi Simpson, 2018. "Insights from the Evaluation of Past Local Area Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 137-155, February.
    4. Warren Sanderson & Sergei Scherbov & Brian O'Neill & Wolfgang Lutz, 2003. "Conditional Probabilistic Population Forecasting," VID Working Papers 0303, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    5. Tom Wilson & Fiona Shalley, 2019. "Subnational population forecasts: Do users want to know about uncertainty?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(13), pages 367-392.
    6. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    7. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    8. Hana Sevcikova & Adrian E. Raftery & Patrick Gerland, 2018. "Probabilistic projection of subnational total fertility rates," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(60), pages 1843-1884.
    9. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    10. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    11. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    12. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    13. Prskawetz, A. & Kogel, T. & Sanderson, W.C. & Scherbov, S., 2007. "The effects of age structure on economic growth: An application of probabilistic forecasting to India," International Journal of Forecasting, Elsevier, vol. 23(4), pages 587-602.
    14. Michael P. Cameron & William Cochrane, 2015. "Using Land-Use Modelling to Statistically Downscale Population Projections to Small Areas," Working Papers in Economics 15/12, University of Waikato.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. Alho, Juha M., 2014. "Forecasting demographic forecasts," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1128-1135.
    17. Pflaumer, Peter, 1993. "Measuring the accuracy of population projections: An application of exploratory data analysis," Discussion Papers, Series II 199, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    18. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    19. Osman Gulseven, 2016. "Forecasting Population and Demographic Composition of Kuwait Until 2030," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1429-1435.
    20. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:39:y:2020:i:1:d:10.1007_s11113-019-09533-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.