IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v37y2018i6d10.1007_s11113-018-9473-5.html
   My bibliography  Save this article

Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida

Author

Listed:
  • Steven A. McAlpine

    (Columbia University)

  • Jeremy R. Porter

    (Columbia University’s Mailman School of Public Health
    CUNY Institute of Demographic Research)

Abstract

Sea-Level Rise (SLR) Projections from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corp of Engineers (USACE) indicate increasing, and imminent, risk to coastal communities from tidal flooding and hurricane storm surge. Building on recent research related to the potential demographic impacts of such changes (Hauer et al. 2016, in Nat Clim Chang 3:802–806, 2017; Neumann et al. 2015; Curtis and Schneider in Popul Environ 33:28–54, 2011), localized flooding projections in the Miami Beach area (Wdowinski et al. in Ocean Coast Manag 126:1–8, 2016) and projected economic losses associated with this rise in projected SLR (Fu et al. Ocean Coast Manag 133:11–17, 2016); this research investigates the accrued current cost, in terms of real-estate dollars lost, due to recurrent tidal flooding and projected increases of flooding in Miami-Dade County. Most directly related to this line of research, Keenan et al. (2018) have recently produced results indicating that Climate Gentrification is taking place in Miami, FL with higher elevations in flood prone areas appreciating at a higher rate. In that vein of thinking, we seek to answer a question posed by such research: What is the actual accrued loss to sea-level rise over the recent past? To answer this question, we replicate well-documented estimation methods by combining publicly available sea-level rise projections, tide gauge trends, and property lot elevation data to identify areas regularly at risk of flooding. Combining recent patterns of flooding inundation with future forecasts, we find that properties projected to be inundated with tidal flooding in 2032 have lost $3.08 each year on each square foot of living area, and properties near roads that will be inundated with tidal flooding in 2032 have lost $3.71 each year on each square foot of living area. These effects total over $465 million in lost real-estate market value between 2005 and 2016 in the Miami-Dade area.

Suggested Citation

  • Steven A. McAlpine & Jeremy R. Porter, 2018. "Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 871-895, December.
  • Handle: RePEc:kap:poprpr:v:37:y:2018:i:6:d:10.1007_s11113-018-9473-5
    DOI: 10.1007/s11113-018-9473-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11113-018-9473-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-018-9473-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathew E. Hauer & Jason M. Evans & Deepak R. Mishra, 2016. "Millions projected to be at risk from sea-level rise in the continental United States," Nature Climate Change, Nature, vol. 6(7), pages 691-695, July.
    2. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    3. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    4. Okmyung Bin & Ben Poulter & Christopher F. Dumas & John C. Whitehead, 2011. "Measuring The Impact Of Sea‐Level Rise On Coastal Real Estate: A Hedonic Property Model Approach," Journal of Regional Science, Wiley Blackwell, vol. 51(4), pages 751-767, October.
    5. Yohe Gary & Neumann James & Ameden Holly, 1995. "Assessing the Economic Cost of Greenhouse-Induced Sea Level Rise: Methods and Application in Support of a National Survey," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 78-97, November.
    6. Michael, Jeffrey A., 2007. "Episodic flooding and the cost of sea-level rise," Ecological Economics, Elsevier, vol. 63(1), pages 149-159, June.
    7. S Fankhauser, 1995. "Protection versus Retreat: The Economic Costs of Sea-Level Rise," Environment and Planning A, , vol. 27(2), pages 299-319, February.
    8. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    9. Okmyung Bin & Thomas W. Crawford & Jamie B. Kruse & Craig E. Landry, 2008. "Viewscapes and Flood Hazard: Coastal Housing Market Response to Amenities and Risk," Land Economics, University of Wisconsin Press, vol. 84(3), pages 434-448.
    10. Christine Shepard & Vera Agostini & Ben Gilmer & Tashya Allen & Jeff Stone & William Brooks & Michael Beck, 2012. "Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 727-745, January.
    11. Roy Darwin & Richard Tol, 2001. "Estimates of the Economic Effects of Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 113-129, June.
    12. Scott Kulp & Benjamin H. Strauss, 2017. "Rapid escalation of coastal flood exposure in US municipalities from sea level rise," Climatic Change, Springer, vol. 142(3), pages 477-489, June.
    13. Mathew E. Hauer, 2017. "Migration induced by sea-level rise could reshape the US population landscape," Nature Climate Change, Nature, vol. 7(5), pages 321-325, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Filippova & Cuong Nguyen & Ilan Noy & Michael Rehm, 2020. "Who Cares? Future Sea Level Rise and House Prices," Land Economics, University of Wisconsin Press, vol. 96(2), pages 207-224.
    2. Barbora Šedová & Lucia Čizmaziová & Athene Cook, 2021. "A meta-analysis of climate migration literature," CEPA Discussion Papers 29, Center for Economic Policy Analysis.
    3. Benjamin Dennis, 2023. "Household, Bank, and Insurer Exposure to Miami Hurricanes: a flow-of-risk analysis," Finance and Economics Discussion Series 2023-013, Board of Governors of the Federal Reserve System (U.S.).
    4. Nori Tarui & Seth Urbanski & Quang Loc Lam & Makena Coffman & Conrad Newfield, 2023. "Sea level rise risk interactions with coastal property values: a case study of O‘ahu, Hawai‘i," Climatic Change, Springer, vol. 176(9), pages 1-21, September.
    5. Andrew Kirby, 2022. "The Right to Make Mistakes? The Limits to Adaptive Planning for Climate Change," Challenges, MDPI, vol. 13(1), pages 1-10, June.
    6. Walls, Margaret A. & Ferreira, Celso & Liao, Yanjun (Penny) & Pesek, Sophie, 2023. "Jobs at Risk: Sea Level Rise, Coastal Flooding, and Local Economies," RFF Working Paper Series 23-12, Resources for the Future.
    7. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    8. Paul Chinowsky & Jacob Helman, 2021. "Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    9. Olga Filippova & Cuong Nguyen & Ilan Noy & Michael Rehm, 2020. "Who Cares? Future Sea Level Rise and House Prices," Land Economics, University of Wisconsin Press, vol. 96(2), pages 207-224.
    10. Wieteska-Rosiak Beata, 2020. "Real Estate Sector in the Face of Climate Change Adaptation in Major Polish Cities," Real Estate Management and Valuation, Sciendo, vol. 28(1), pages 51-63, March.
    11. Mathew E. Hauer & Dean Hardy & Scott A. Kulp & Valerie Mueller & David J. Wrathall & Peter U. Clark, 2021. "Assessing population exposure to coastal flooding due to sea level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Zac J. Taylor, 2020. "The real estate risk fix: Residential insurance-linked securitization in the Florida metropolis," Environment and Planning A, , vol. 52(6), pages 1131-1149, September.
    13. Bienert, Sven & Geiger, Peter & Spanner, Maximilian, . "Naturgefahren und Immobilienwerte in Deutschland : Studie," Beiträge zur Immobilienwirtschaft, University of Regensburg, Department of Economics, number 25, August.
    14. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    15. Kok, Sien & Bisaro, Alexander & de Bel, Mark & Hinkel, Jochen & Bouwer, Laurens M., 2021. "The potential of nature-based flood defences to leverage public investment in coastal adaptation: Cases from the Netherlands, Indonesia and Georgia," Ecological Economics, Elsevier, vol. 179(C).
    16. Jesse M. Keenan & Jacob T. Bradt, 2020. "Underwaterwriting: from theory to empiricism in regional mortgage markets in the U.S," Climatic Change, Springer, vol. 162(4), pages 2043-2067, October.
    17. Christopher J. Amante & Jacob Dice & David Rodziewicz & Eugene Wahl, 2020. "Housing Market Value Impairment from Future Sea-level Rise Inundation," Research Working Paper RWP 20-05, Federal Reserve Bank of Kansas City.
    18. Dasgupta, Susmita & Wheeler, David & Bandyopadhyay, Sunando & Ghosh, Santadas & Roy, Utpal, 2022. "Coastal dilemma: Climate change, public assistance and population displacement," World Development, Elsevier, vol. 150(C).
    19. Ryan B. Anderson, 2022. "The taboo of retreat: The politics of sea level rise, managed retreat, and coastal property values in California," Economic Anthropology, Wiley Blackwell, vol. 9(2), pages 284-296, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    2. Mathew E. Hauer & Dean Hardy & Scott A. Kulp & Valerie Mueller & David J. Wrathall & Peter U. Clark, 2021. "Assessing population exposure to coastal flooding due to sea level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Olga Filippova & Cuong Nguyen & Ilan Noy & Michael Rehm, 2020. "Who Cares? Future Sea Level Rise and House Prices," Land Economics, University of Wisconsin Press, vol. 96(2), pages 207-224.
    4. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    5. Xinyu Fu & Jie Song, 2017. "Assessing the Economic Costs of Sea Level Rise and Benefits of Coastal Protection: A Spatiotemporal Approach," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    6. Anna Marandi & Kelly Leilani Main, 2021. "Vulnerable City, recipient city, or climate destination? Towards a typology of domestic climate migration impacts in US cities," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 465-480, September.
    7. Hirte, Georg & Nitzsche, Eric & Tscharaktschiew, Stefan, 2018. "Optimal adaptation in cities," Land Use Policy, Elsevier, vol. 73(C), pages 147-169.
    8. Molinaroli, Emanuela & Guerzoni, Stefano & Suman, Daniel, 2018. "Adaptations to Sea Level Rise: A Tale of Two Cities – Venice and Miami," MarXiv 73a25, Center for Open Science.
    9. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    10. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    11. Bienert, Sven & Geiger, Peter & Spanner, Maximilian, . "Naturgefahren und Immobilienwerte in Deutschland : Studie," Beiträge zur Immobilienwirtschaft, University of Regensburg, Department of Economics, number 25, August.
    12. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    13. Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
    14. Yan Fang & Jie Yin & Bihu Wu, 2016. "Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: a case study in Zhejiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 611-624, October.
    15. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    16. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    17. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    18. Kelsea Best & Qian He & Allison C. Reilly & Deb A. Niemeier & Mitchell Anderson & Tom Logan, 2023. "Demographics and risk of isolation due to sea level rise in the United States," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    20. Michael, Jeffrey A., 2007. "Episodic flooding and the cost of sea-level rise," Ecological Economics, Elsevier, vol. 63(1), pages 149-159, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:37:y:2018:i:6:d:10.1007_s11113-018-9473-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.