IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v25y2025i2d10.1007_s11067-024-09635-1.html
   My bibliography  Save this article

A Two-stage Stochastic Programming for the Integrated Emergency Mobility Facility Allocation and Road Network Design Under Uncertainty

Author

Listed:
  • Huatian Gong

    (Tongji University)

  • Xiaoguang Yang

    (Tongji University
    Tongji University)

Abstract

Emergency Mobility Facilities (EMFs) possess the capability to relocate dynamically, providing adequate responses to fluctuations in emergent demand patterns across temporal and spatial dimensions. This study proposes a two-stage stochastic programming model that integrates the EMF allocation problem and the road network design problem for disaster preparedness. The model takes into account uncertainties arising from emergency demand and road network congestion levels under various sizes and timings of disaster occurrences. The first-stage decision involves determining the fleet size of EMFs and identifying which road links’ travel time should be reduced. The second-stage decision pertains to the routing and schedule of each EMF for each disaster scenario. Due to considering various sources of uncertainty, the resulting model takes the form of a non-convex mixed-integer nonlinear program (MINLP). This poses computational challenges due to the inclusion of bilinear terms, implicit expressions, and the double-layered structure in the second-stage model, along with integer decision variables. A comprehensive set of techniques is applied to solve the model efficiently. This includes employing linearization techniques, converting the second-stage model into a single-level equivalent, transforming an integer variable into multiple binary variables, and utilizing other methods to equivalently reformulate the model into a mixed-integer linear programming problem (MILP). These transformations render the model amenable to solutions using the integer L-shaped method. A simplified example clarifies the solution procedures of the model and algorithm, establishing the theoretical foundation for their practical implementation. Subsequently, to empirically demonstrate the practicality of the proposed model and algorithm, a real-world case study is conducted, effectively validating their utility.

Suggested Citation

  • Huatian Gong & Xiaoguang Yang, 2025. "A Two-stage Stochastic Programming for the Integrated Emergency Mobility Facility Allocation and Road Network Design Under Uncertainty," Networks and Spatial Economics, Springer, vol. 25(2), pages 445-486, June.
  • Handle: RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09635-1
    DOI: 10.1007/s11067-024-09635-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-024-09635-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-024-09635-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Karmel S. Shehadeh, 2023. "Distributionally Robust Optimization Approaches for a Stochastic Mobile Facility Fleet Sizing, Routing, and Scheduling Problem," Transportation Science, INFORMS, vol. 57(1), pages 197-229, January.
    2. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    3. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    4. Jing Zhao & Jie Yu & Xiaomei Xia & Jingru Ye & Yun Yuan, 2019. "Exclusive Bus Lane Network Design: A Perspective from Intersection Operational Dynamics," Networks and Spatial Economics, Springer, vol. 19(4), pages 1143-1171, December.
    5. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    6. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    7. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    8. Y. N. Hoogendoorn & R. Spliet, 2023. "An Improved Integer L -Shaped Method for the Vehicle Routing Problem with Stochastic Demands," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 423-439, March.
    9. Mohammad Asghari & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-hashem & Maxim A. Dulebenets, 2022. "Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey," Mathematics, MDPI, vol. 10(2), pages 1-26, January.
    10. Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
    11. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    12. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    13. Russell Halper & S. Raghavan, 2011. "The Mobile Facility Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 413-434, August.
    14. Hamid Farvaresh & Mohammad Sepehri, 2013. "A Branch and Bound Algorithm for Bi-level Discrete Network Design Problem," Networks and Spatial Economics, Springer, vol. 13(1), pages 67-106, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramezanian, Reza & Mahdavi, Mohammad Hosein & Shahparvari, Shahrooz, 2025. "Integrated mobile facility production and distribution scheduling planning; A synchronized solution framework," Applied Mathematics and Computation, Elsevier, vol. 494(C).
    2. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    3. Reusken, Meike & Laporte, Gilbert & Rohmer, Sonja U.K. & Cruijssen, Frans, 2024. "Vehicle routing with stochastic demand, service and waiting times — The case of food bank collection problems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 111-127.
    4. Pirmin Fontaine & Stefan Minner, 2017. "A dynamic discrete network design problem for maintenance planning in traffic networks," Annals of Operations Research, Springer, vol. 253(2), pages 757-772, June.
    5. Shahmoradi-Moghadam, Hani & Schönberger, Jörn, 2021. "Joint optimization of production and routing master planning in mobile supply chains," Operations Research Perspectives, Elsevier, vol. 8(C).
    6. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    7. Wang, Yiran & Mo, Pengli & Chen, Jingxu & Liu, Zhiyuan, 2025. "Managing oversaturation in BRT corridors: A new approach of timetabling for resilience enhancement using a tailored integer L-shaped algorithm," European Journal of Operational Research, Elsevier, vol. 320(1), pages 219-238.
    8. W. Szeto & Y. Jiang & D. Wang & A. Sumalee, 2015. "A Sustainable Road Network Design Problem with Land Use Transportation Interaction over Time," Networks and Spatial Economics, Springer, vol. 15(3), pages 791-822, September.
    9. Salman, F. Sibel & Yücel, Eda & Kayı, İlker & Turper-Alışık, Sedef & Coşkun, Abdullah, 2021. "Modeling mobile health service delivery to Syrian migrant farm workers using call record data," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    10. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    11. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    12. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    13. Chenmei Teng & Poshan Yu & Liwen Liu, 2024. "A cooperative optimization model and enhanced algorithm for guided strategies in emergency mobile facilities," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    14. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    15. Rashidi, Eghbal & Parsafard, Mohsen & Medal, Hugh & Li, Xiaopeng, 2016. "Optimal traffic calming: A mixed-integer bi-level programming model for locating sidewalks and crosswalks in a multimodal transportation network to maximize pedestrians’ safety and network usability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 33-50.
    16. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    17. Placido dos Santos, Felipe Silva & Oliveira, Fabricio, 2019. "An enhanced L-Shaped method for optimizing periodic-review inventory control problems modeled via two-stage stochastic programming," European Journal of Operational Research, Elsevier, vol. 275(2), pages 677-693.
    18. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    19. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    20. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09635-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.