IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i1d10.1007_s10614-024-10565-w.html
   My bibliography  Save this article

Standard Errors for Regression-Based Causal Effect Estimates in Economics Using Numerical Derivatives

Author

Listed:
  • Joseph V. Terza

    (Indiana University School of Liberal Arts at IUPUI)

Abstract

The aim of nearly all empirical studies in economics is to provide scientific evidence that can be used to assess policy relevant cause-and-effect. In the context of the general potential outcomes framework, we review how a causal effect parameter can be rigorously but tractably specified, identified and estimated along with its asymptotic standard error. For cases in which the analytic and computational requirements for calculation of the ASE are challenging, we suggest the use of numerical derivatives (ND). We detail the specific type of ND software required for this purpose, and note that it is offered as a feature in most statistical packages. As an illustration, we analyze the causal effect of wife's high school graduation on family size using the Stata/Mata deriv command. Code for this example is supplied in an appendix.

Suggested Citation

  • Joseph V. Terza, 2025. "Standard Errors for Regression-Based Causal Effect Estimates in Economics Using Numerical Derivatives," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 69-89, January.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:1:d:10.1007_s10614-024-10565-w
    DOI: 10.1007/s10614-024-10565-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10565-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10565-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terza Joseph V., 2020. "Regression-Based Causal Analysis from the Potential Outcomes Perspective," Journal of Econometric Methods, De Gruyter, vol. 9(1), pages 1-15, January.
    2. Sharad Borle & Utpal M. Dholakia & Siddharth S. Singh & Robert A. Westbrook, 2007. "The Impact of Survey Participation on Subsequent Customer Behavior: An Empirical Investigation," Marketing Science, INFORMS, vol. 26(5), pages 711-726, 09-10.
    3. Joseph V. Terza, 2017. "Causal effect estimation and inference using Stata," Stata Journal, StataCorp LLC, vol. 17(4), pages 939-961, December.
    4. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    5. Xingchen Yan & Tao Wang & Jun Chen & Xiaofei Ye & Zhen Yang & Hua Bai, 2019. "Analysis of the Characteristics and Number of Bicycle–Passenger Conflicts at Bus Stops for Improving Safety," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    6. Sellers,Kimberly F., 2023. "The Conway–Maxwell–Poisson Distribution," Cambridge Books, Cambridge University Press, number 9781108481106, June.
    7. Weiren Wang & Felix Famoye, 1997. "Modeling household fertility decisions with generalized Poisson regression," Journal of Population Economics, Springer;European Society for Population Economics, vol. 10(3), pages 273-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddharth Singh & Sharad Borle & Dipak Jain, 2009. "A generalized framework for estimating customer lifetime value when customer lifetimes are not observed," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 181-205, June.
    2. Dongying Zhan & Derek S. Young, 2024. "Finite mixtures of mean-parameterized Conway–Maxwell–Poisson models," Statistical Papers, Springer, vol. 65(3), pages 1469-1492, May.
    3. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    4. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    5. Sáez-Castillo, A.J. & Conde-Sánchez, A., 2013. "A hyper-Poisson regression model for overdispersed and underdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 148-157.
    6. Meena Badade & T. V. Ramanathan, 2022. "Probabilistic Frontier Regression Models for Count Type Output Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 235-260, September.
    7. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    8. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    9. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    10. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    11. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    12. Andrew Halpern-Manners & John Warren, 2012. "Panel Conditioning in Longitudinal Studies: Evidence From Labor Force Items in the Current Population Survey," Demography, Springer;Population Association of America (PAA), vol. 49(4), pages 1499-1519, November.
    13. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    14. Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024. "Generalized Poisson difference autoregressive processes," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
    15. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    16. Fernando Bonassi & Rafael Stern & Cláudia Peixoto & Sergio Wechsler, 2015. "Exchangeability and the law of maturity," Theory and Decision, Springer, vol. 78(4), pages 603-615, April.
    17. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    18. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.
    19. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    20. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:1:d:10.1007_s10614-024-10565-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.