IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i1d10.1007_s10614-022-10344-5.html
   My bibliography  Save this article

Uncertainty Optimization Based Feature Selection Model for Stock Marketing

Author

Listed:
  • Arvind Kumar Sinha

    (National Institute of Technology)

  • Pradeep Shende

    (National Institute of Technology)

Abstract

Market analyzers use different parameters as features in the market data to analyze the market trends. The feature’s values act as a signal to market fluctuations. Many studies have examined these features to predict market movement more effectively. However, the method to minimize the uncertainties associated with the features is not available in the literature. This exploratory study introduces the uncertainty optimization based feature selection method for stock marketing. We introduce a notion of certainty region of the feature as the set of feature values, which signify particular happening with certainty. We use rough set theory to find the feature’s certainty region and uncertainty region and measure each feature’s significance. The feature whose certainty region is the maximum is the most significant in the feature space. Hence we group the features by minimizing the uncertainty region of the most informative features to get feature subsets for feature selection. We propose an algorithm based on uncertainty optimization to find subsets of the feature set for effectiveness and performance enhancement in the feature selection. We obtain the decision rules with comprehensive coverage and excellent support using the selected features. The accuracy of classification using the chosen parameters is up to 85.91%, which is higher than 79.54% of the complete feature set. The study provides an uncertainty optimization model for more efficient market movement prediction.

Suggested Citation

  • Arvind Kumar Sinha & Pradeep Shende, 2024. "Uncertainty Optimization Based Feature Selection Model for Stock Marketing," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 357-389, January.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10344-5
    DOI: 10.1007/s10614-022-10344-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10344-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10344-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juvenal José Duarte & Sahudy Montenegro González & José César Cruz, 2021. "Predicting Stock Price Falls Using News Data: Evidence from the Brazilian Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 311-340, January.
    2. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    3. repec:icf:icfjaf:v:19:y:2013:i:2:p:84-99 is not listed on IDEAS
    4. V. Vismayaa & K. R. Pooja & A. Alekhya & C. N. Malavika & Binoy B. Nair & P. N. Kumar, 2020. "Classifier Based Stock Trading Recommender Systems for Indian stocks: An Empirical Evaluation," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 901-923, March.
    5. Ellis, Craig A. & Parbery, Simon A., 2005. "Is smarter better? A comparison of adaptive, and simple moving average trading strategies," Research in International Business and Finance, Elsevier, vol. 19(3), pages 399-411, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    2. S. Divyashree & Christy Jackson Joshua & Abdul Quadir Md & Senthilkumar Mohan & A. Sheik Abdullah & Ummul Hanan Mohamad & Nisreen Innab & Ali Ahmadian, 2024. "Enabling business sustainability for stock market data using machine learning and deep learning approaches," Annals of Operations Research, Springer, vol. 342(1), pages 287-322, November.
    3. Zefan Dong & Yonghui Zhou, 2024. "A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM," Mathematics, MDPI, vol. 12(16), pages 1-16, August.
    4. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
    5. Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
    6. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    7. Xiaolu Wei & Yubo Tian & Na Li & Huanxin Peng, 2024. "Evaluating ensemble learning techniques for stock index trend prediction: a case of China," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 505-530, September.
    8. Aparna Gupta & Vipula Rawte & Mohammed J. Zaki, 2024. "Predicting Firm Financial Performance from SEC Filing Changes Using Automatically Generated Dictionary," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 307-334, July.
    9. Suya Jin & Guiyan Liu & Qifeng Bai, 2023. "Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    10. Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
    11. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    12. Tianyu Zhou & Pinqiao Wang & Yilin Wu & Hongyang Yang, 2024. "FinRobot: AI Agent for Equity Research and Valuation with Large Language Models," Papers 2411.08804, arXiv.org.
    13. Chhaya Dubey & Dharmendra Kumar & Ashutosh Kumar Singh & Vijay Kumar Dwivedi, 2024. "Applying machine learning models on blockchain platform selection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3643-3656, August.
    14. Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
    15. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    16. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2008. "Real-time macroeconomic data and ex ante stock return predictability," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 274-290.
    17. Serbera, Jean-Philippe & Paumard, Pascal, 2016. "The fall of high-frequency trading: A survey of competition and profits," Research in International Business and Finance, Elsevier, vol. 36(C), pages 271-287.
    18. Ahmed R. M. Alsayed, 2023. "Turkish Stock Market from Pandemic to Russian Invasion, Evidence from Developed Machine Learning Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1107-1123, October.
    19. Popov, Maxim & Madlener, Reinhard, 2014. "Backtesting and Evaluation of Different Trading Schemes for the Portfolio Management of Natural Gas," FCN Working Papers 5/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    20. Kaike Sa Teles Rocha Alves & Rosangela Ballini & Eduardo Pestana de Aguiar, 2025. "Financial Series Forecasting: A New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3673-3721, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10344-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.