Uncertainty Optimization Based Feature Selection Model for Stock Marketing
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-022-10344-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Juvenal José Duarte & Sahudy Montenegro González & José César Cruz, 2021. "Predicting Stock Price Falls Using News Data: Evidence from the Brazilian Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 311-340, January.
- repec:icf:icfjaf:v:19:y:2013:i:2:p:84-99 is not listed on IDEAS
- Ellis, Craig A. & Parbery, Simon A., 2005. "Is smarter better? A comparison of adaptive, and simple moving average trading strategies," Research in International Business and Finance, Elsevier, vol. 19(3), pages 399-411, September.
- Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
- V. Vismayaa & K. R. Pooja & A. Alekhya & C. N. Malavika & Binoy B. Nair & P. N. Kumar, 2020. "Classifier Based Stock Trading Recommender Systems for Indian stocks: An Empirical Evaluation," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 901-923, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
- Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
- Xiaolu Wei & Yubo Tian & Na Li & Huanxin Peng, 2024. "Evaluating ensemble learning techniques for stock index trend prediction: a case of China," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 505-530, September.
- Suya Jin & Guiyan Liu & Qifeng Bai, 2023. "Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
- Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
- Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
- Serbera, Jean-Philippe & Paumard, Pascal, 2016. "The fall of high-frequency trading: A survey of competition and profits," Research in International Business and Finance, Elsevier, vol. 36(C), pages 271-287.
- Ahmed R. M. Alsayed, 2023. "Turkish Stock Market from Pandemic to Russian Invasion, Evidence from Developed Machine Learning Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1107-1123, October.
- Popov, Maxim & Madlener, Reinhard, 2014. "Backtesting and Evaluation of Different Trading Schemes for the Portfolio Management of Natural Gas," FCN Working Papers 5/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Rachna Sable & Shivani Goel & Pradeep Chatterjee, 2024. "Deep Learning Model for Fusing Spatial and Temporal Data for Stock Market Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1639-1662, September.
- Ioan Mihail Savaniu & Alexandru-Polifron Chiriță & Oana Tonciu & Magdalena Culcea & Ancuta Neagu, 2023. "Neural-Network-Based Time Control for Microwave Oven Heating of Food Products Distributed by a Solar-Powered Vending Machine with Energy Management Considerations," Energies, MDPI, vol. 16(19), pages 1-22, October.
- Nabanita Das & Bikash Sadhukhan & Rajdeep Ghosh & Satyajit Chakrabarti, 2024. "Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3407-3446, December.
- Damian Ślusarczyk & Robert Ślepaczuk, 2023. "Optimal Markowitz Portfolio Using Returns Forecasted with Time Series and Machine Learning Models," Working Papers 2023-17, Faculty of Economic Sciences, University of Warsaw.
- Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
- Mufhumudzi Muthivhi & Terence L. van Zyl, 2022. "Fusion of Sentiment and Asset Price Predictions for Portfolio Optimization," Papers 2203.05673, arXiv.org.
- Roy Hayes & Jingwei Wu & Ruijra Chaysiri & Jean Bae & Peter Beling & William Scherer, 2016. "Effects of time horizon and asset condition on the profitability of technical trading rules," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(1), pages 41-59, January.
- Juan C. King & Roberto Dale & Jos'e M. Amig'o, 2024. "Blockchain Metrics and Indicators in Cryptocurrency Trading," Papers 2403.00770, arXiv.org.
- Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.
- Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
- Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
More about this item
Keywords
Stock market; Uncertainty optimization; Rough set; Feature selection; Optimization algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10344-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.