IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v7y1973i1p49-74.html
   My bibliography  Save this article

Network Design with Fixed and Variable Cost Elements

Author

Listed:
  • John W. Billheimer

    (SYSTAN, Inc., Los Altos, California)

  • Paul Gray

    (University of Southern California, Los Angeles, California)

Abstract

A route selection algorithm is presented far designing transportation networks. The algorithm balances fixed construction costs and variable user costs in a network having a fixed set of nodes and a known demand, for internode service. The problem solved is a special case of the fixed-cost, multicommodity transshipment problem in which each commodity has a single, unique source node. The route selection algorithm alternatively applies link elimination and link insertion criteria that converge to a local optimum. Upper and lower bounds on the fixed and variable portions of the globally optimum solution are determined and the sensitivity of the solution is estimated. Unique rules are formulated for identifying links that must or must not appear in the globally optimum solution. The solution procedure has been coded for a digital computer and demonstrated using a representation of Minneapolis-St. Paul having 68 nodes and 476 potential oneway links.

Suggested Citation

  • John W. Billheimer & Paul Gray, 1973. "Network Design with Fixed and Variable Cost Elements," Transportation Science, INFORMS, vol. 7(1), pages 49-74, February.
  • Handle: RePEc:inm:ortrsc:v:7:y:1973:i:1:p:49-74
    DOI: 10.1287/trsc.7.1.49
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.7.1.49
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.7.1.49?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cantarella, G.E. & Pavone, G. & Vitetta, A., 2006. "Heuristics for urban road network design: Lane layout and signal settings," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1682-1695, December.
    2. Karimi Dehnavi, Hadi & Rezvan, Mohammad Taghi & Shirmohammadli, Abdolmatin & Vallée, Dirk, 2013. "A solution for urban road selection and construction problem using simulation and goal programming—Case study of the city of Isfahan," Transport Policy, Elsevier, vol. 29(C), pages 46-53.
    3. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    4. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    5. Giulio Cantarella & Antonino Vitetta, 2006. "The multi-criteria road network design problem in an urban area," Transportation, Springer, vol. 33(6), pages 567-588, November.
    6. K. Ramacandra Rao & Subhro Mitra & Joseph Szmerekovsky, 2021. "Bus Transit Network Structure Selection With Multiple Objectives," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(4), pages 1-13, October.
    7. Shao, Shuai & Tan, Zhijia & Wang, Tingsong & Liu, Zhiyuan, 2023. "Configuration design of the emission control areas for coastal ships: A Stackelberg game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    8. M-G Yoon & J Current, 2008. "The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 80-89, January.
    9. Jenn-Rong Lin & Linda Nozick & Mark Turnquist, 2006. "Strategic design of distribution systems with economies of scale in transportation," Annals of Operations Research, Springer, vol. 144(1), pages 161-180, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:7:y:1973:i:1:p:49-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.