IDEAS home Printed from
   My bibliography  Save this article

Efficient Computation of Hedging Parameters for Discretely Exercisable Options


  • Ron Kaniel

    () (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • Stathis Tompaidis

    () (McCombs School of Business, University of Texas at Austin, Austin, Texas 78712)

  • Alexander Zemlianov

    () (Lehman Brothers, New York, New York 10019)


We propose an algorithm to calculate confidence intervals for the values of hedging parameters of discretely exercisable options using Monte Carlo simulation. The algorithm is based on a combination of the duality formulation of the optimal stopping problem for pricing discretely exercisable options and Monte Carlo estimation of hedging parameters for European options. We show that the width of the confidence interval for a hedging parameter decreases, with an increase in the computer budget, asymptotically at the same rate as the width of the confidence interval for the price of the option. The method can handle arbitrary payoff functions, general diffusion processes, and a large number of random factors. We also present a fast, heuristic, alternative method and use our method to evaluate its accuracy.

Suggested Citation

  • Ron Kaniel & Stathis Tompaidis & Alexander Zemlianov, 2008. "Efficient Computation of Hedging Parameters for Discretely Exercisable Options," Operations Research, INFORMS, vol. 56(4), pages 811-826, August.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:4:p:811-826
    DOI: 10.1287/opre.1080.0557

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    4. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    5. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    6. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.

    More about this item


    finance; derivative hedging;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:4:p:811-826. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.