IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v54y2006i2p337-352.html
   My bibliography  Save this article

Effective Heuristics for Multiproduct Partial Shipment Models

Author

Listed:
  • Milind Dawande

    (School of Management, University of Texas at Dallas, Mail Station SM 30, Richardson, Texas 75083-0688)

  • Srinagesh Gavirneni

    (Johnson Graduate School of Management, Cornell University, Ithaca, New York)

  • Sridhar Tayur

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania)

Abstract

Motivated by real applications, we consider the problem of shipping products to multiple customers from limited inventory. After formulating the optimization problems under different restrictions on partial shipments, we find that commercially available packages, applied directly, are unsatisfactory, as are simple greedy approaches. We develop a scheme of heuristics that enables the user to select a good balance between computation time and effectiveness. A detailed computational study of one- and two-period industrial-sized problems indicates that these heuristics are computationally practical and generate solutions that are, on average, within 3%--4% of the optimum.

Suggested Citation

  • Milind Dawande & Srinagesh Gavirneni & Sridhar Tayur, 2006. "Effective Heuristics for Multiproduct Partial Shipment Models," Operations Research, INFORMS, vol. 54(2), pages 337-352, April.
  • Handle: RePEc:inm:oropre:v:54:y:2006:i:2:p:337-352
    DOI: 10.1287/opre.1050.0263
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1050.0263
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1050.0263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luca Bertazzi & Maria Grazia Speranza & Walter Ukovich, 2000. "Exact and Heuristic Solutions for a Shipment Problem with Given Frequencies," Management Science, INFORMS, vol. 46(7), pages 973-988, July.
    2. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    3. Rosing, K. E. & ReVelle, C. S., 1997. "Heuristic concentration: Two stage solution construction," European Journal of Operational Research, Elsevier, vol. 97(1), pages 75-86, February.
    4. Bertazzi, Luca & Speranza, Maria Grazia & Ukovich, Walter, 1997. "Minimization of logistic costs with given frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 327-340, August.
    5. M. W. Padberg & T. J. Van Roy & L. A. Wolsey, 1985. "Valid Linear Inequalities for Fixed Charge Problems," Operations Research, INFORMS, vol. 33(4), pages 842-861, August.
    6. Banerjee, Snehamay & Banerjee, Avijit & Burton, Jonathan & Bistline, William, 2001. "Controlled partial shipments in two-echelon supply chain networks: a simulation study," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 91-100, May.
    7. Padberg, M.W. & Van Roy, T.J. & Wolsey, L.A., 1985. "Valid linear inequalities for fixed charge problems," LIDAM Reprints CORE 656, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar & Mohammad Hassan Sharifitabar, 2015. "A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 48-58, February.
    2. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    3. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    4. Binyuan Chen & Simge Küçükyavuz & Suvrajeet Sen, 2011. "Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs," Operations Research, INFORMS, vol. 59(1), pages 202-210, February.
    5. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    6. Fred Glover & Hanif Sherali, 2005. "Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints," Annals of Operations Research, Springer, vol. 140(1), pages 215-233, November.
    7. Agostinho Agra & Marielle Christiansen & Alexandrino Delgado, 2013. "Mixed Integer Formulations for a Short Sea Fuel Oil Distribution Problem," Transportation Science, INFORMS, vol. 47(1), pages 108-124, February.
    8. Quentin Louveaux & Laurence Wolsey, 2007. "Lifting, superadditivity, mixed integer rounding and single node flow sets revisited," Annals of Operations Research, Springer, vol. 153(1), pages 47-77, September.
    9. Doostmohammadi, Mahdi & Akartunalı, Kerem, 2018. "Valid inequalities for two-period relaxations of big-bucket lot-sizing problems: Zero setup case," European Journal of Operational Research, Elsevier, vol. 267(1), pages 86-95.
    10. Anulark Pinnoi & Wilbert E. Wilhelm, 1998. "Assembly System Design: A Branch and Cut Approach," Management Science, INFORMS, vol. 44(1), pages 103-118, January.
    11. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    12. Alper Atamtürk & Martin Savelsbergh, 2005. "Integer-Programming Software Systems," Annals of Operations Research, Springer, vol. 140(1), pages 67-124, November.
    13. Diego Klabjan & George L. Nemhauser, 2002. "A Polyhedral Study of Integer Variable Upper Bounds," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 711-739, November.
    14. Shi Li, 2020. "Constant Approximation Algorithm for Nonuniform Capacitated Multi-Item Lot Sizing via Strong Covering Inequalities," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 947-965, August.
    15. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    16. Richard Laundy & Michael Perregaard & Gabriel Tavares & Horia Tipi & Alkis Vazacopoulos, 2009. "Solving Hard Mixed-Integer Programming Problems with Xpress-MP: A MIPLIB 2003 Case Study," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 304-313, May.
    17. Retsef Levi & Andrea Lodi & Maxim Sviridenko, 2008. "Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 461-474, May.
    18. Bertazzi, Luca & Moezi, Sarem Deilami & Maggioni, Francesca, 2021. "The value of integration of full container load, less than container load and air freight shipments in vendor–managed inventory systems," International Journal of Production Economics, Elsevier, vol. 241(C).
    19. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    20. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:54:y:2006:i:2:p:337-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.