IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v46y1998i2p161-175.html
   My bibliography  Save this article

Integrated Simulation, Heuristic and Optimisation Approaches to Staff Scheduling

Author

Listed:
  • Andrew J. Mason

    (University of Auckland, New Zealand)

  • David M. Ryan

    (University of Auckland, New Zealand)

  • David M. Panton

    (University of South Australia, Australia)

Abstract

This paper details a new simulation and optimisation based system for personnel scheduling (rostering) of customs staff at the Auckland International Airport, New Zealand. An integrated approach using simulation, heuristic descent, and integer programming techniques has been developed to determine near-optimal staffing levels. The system begins by using a new simulation system embedded within a heuristic search to determine minimum staffing levels for arrival and departure work areas. These staffing requirements are then used as the input to an integer programming model, which optimally allocates full- and part-time staff to each period of the working day. These shifts are then assigned to daily work schedules having a six-day-on, three-day-off structure. The application of these techniques has resulted in significantly lower staffing levels, while at the same time creating both high-quality rosters and ensuring that all passenger processing targets are met. This paper charts the development of this system, outlines failures where they have occurred, and summarises the ongoing impacts of this work on the organisation.

Suggested Citation

  • Andrew J. Mason & David M. Ryan & David M. Panton, 1998. "Integrated Simulation, Heuristic and Optimisation Approaches to Staff Scheduling," Operations Research, INFORMS, vol. 46(2), pages 161-175, April.
  • Handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:161-175
    DOI: 10.1287/opre.46.2.161
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.46.2.161
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.46.2.161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Kovynyov & Ralf Mikut, 2019. "Digital technologies in airport ground operations," Netnomics, Springer, vol. 20(1), pages 1-30, April.
    2. Silke Jütte & Daniel Müller & Ulrich W. Thonemann, 2017. "Optimizing railway crew schedules with fairness preferences," Journal of Scheduling, Springer, vol. 20(1), pages 43-55, February.
    3. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    4. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    5. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
    6. Lishun Zeng & Mingyu Zhao & Yangfan Liu, 2019. "Airport ground workforce planning with hierarchical skills: a new formulation and branch-and-price approach," Annals of Operations Research, Springer, vol. 275(1), pages 245-258, April.
    7. David Sinreich & Ola Jabali, 2007. "Staggered work shifts: a way to downsize and restructure an emergency department workforce yet maintain current operational performance," Health Care Management Science, Springer, vol. 10(3), pages 293-308, September.
    8. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    9. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    10. Knust, Sigrid & Schumacher, Elisabeth, 2011. "Shift scheduling for tank trucks," Omega, Elsevier, vol. 39(5), pages 513-521, October.
    11. Chu, Sydney C.K., 2007. "Generating, scheduling and rostering of shift crew-duties: Applications at the Hong Kong International Airport," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1764-1778, March.
    12. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    13. Pastor, Rafael & Olivella, Jordi, 2008. "Selecting and adapting weekly work schedules with working time accounts: A case of a retail clothing chain," European Journal of Operational Research, Elsevier, vol. 184(1), pages 1-12, January.
    14. Scott E. Sampson, 2008. "OR PRACTICE---Optimization of Vacation Timeshare Scheduling," Operations Research, INFORMS, vol. 56(5), pages 1079-1088, October.
    15. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    16. Jonathan Bard & David Morton & Yong Wang, 2007. "Workforce planning at USPS mail processing and distribution centers using stochastic optimization," Annals of Operations Research, Springer, vol. 155(1), pages 51-78, November.
    17. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    18. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.
    19. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    20. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    21. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:161-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.