IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v50y2004i12p1729-1743.html
   My bibliography  Save this article

Managing Inventory and Supply Performance in Assembly Systems with Random Supply Capacity and Demand

Author

Listed:
  • Ramesh Bollapragada

    (College of Business, San Francisco State University, San Francisco, California 94132, and Bell Laboratories, Lucent Technologies, Holmdel, New Jersey 07733)

  • Uday S. Rao

    (College of Business, University of Cincinnati, Cincinnati, Ohio 45221)

  • Jun Zhang

    (A. B. Freeman School of Business, Tulane University, New Orleans, Louisiana 70118)

Abstract

We consider stock positioning in a pure assembly system controlled using installation base-stock policies. When component suppliers have random capacity and end-product demand is uncertain, we characterize the system's inventory dynamics. We show that components and the end product play convex complementary roles in providing customer service. We propose a decomposition approach that uses an internal service level to independently determine near-optimal stock levels for each component. Compared with the optimal, the average error of the decomposition approach is 0.66% across the tested instances. Compared with current practice, this approach has the potential to reduce the safety-stock cost by as much as 30%. Our computational analysis on two-echelon systems also illustrates several managerial insights: We observe that the cost reduction from improving supply performance is high when demand variability or the number of components or target customer service is high, or when the end product is more expensive relative to components. On average, (i) reducing the lead time of the more expensive component yielded higher benefit than reducing the lead time for the less expensive component, and (ii) the benefit of improving one of the supply parameters (service level or lead time) was higher when the value of the other parameter was already more favorable (lower lead time or higher service level, respectively). Finally, we analytically show how a multi-echelon pure assembly system may be converted into an equivalent two-echelon assembly system to which all our results apply.

Suggested Citation

  • Ramesh Bollapragada & Uday S. Rao & Jun Zhang, 2004. "Managing Inventory and Supply Performance in Assembly Systems with Random Supply Capacity and Demand," Management Science, INFORMS, vol. 50(12), pages 1729-1743, December.
  • Handle: RePEc:inm:ormnsc:v:50:y:2004:i:12:p:1729-1743
    DOI: 10.1287/mnsc.1040.0314
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1040.0314
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1040.0314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert S. Kaplan, 1970. "A Dynamic Inventory Model with Stochastic Lead Times," Management Science, INFORMS, vol. 16(7), pages 491-507, March.
    2. van Houtum, G. J. & Zijm, W. H. M., 1991. "Computational procedures for stochastic multi-echelon production systems," International Journal of Production Economics, Elsevier, vol. 23(1-3), pages 223-237, October.
    3. Stephen C. Graves & Sean P. Willems, 2000. "Optimizing Strategic Safety Stock Placement in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 68-83, June.
    4. Paul Glasserman & Sridhar Tayur, 1994. "The Stability of a Capacitated, Multi-Echelon Production-Inventory System Under a Base-Stock Policy," Operations Research, INFORMS, vol. 42(5), pages 913-925, October.
    5. Jing-Sheng Song & Susan H. Xu & Bin Liu, 1999. "Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes," Operations Research, INFORMS, vol. 47(1), pages 131-149, February.
    6. Andrew J. Clark & Herbert Scarf, 2004. "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, INFORMS, vol. 50(12_supple), pages 1782-1790, December.
    7. Jing-Sheng Song & Paul H. Zipkin, 1996. "Inventory Control with Information About Supply Conditions," Management Science, INFORMS, vol. 42(10), pages 1409-1419, October.
    8. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    9. Kaj Rosling, 1989. "Optimal Inventory Policies for Assembly Systems Under Random Demands," Operations Research, INFORMS, vol. 37(4), pages 565-579, August.
    10. Kamran Moinzadeh & Hau L. Lee, 1989. "Approximate Order Quantities and Reorder Points for Inventory Systems Where Orders Arrive in Two Shipments," Operations Research, INFORMS, vol. 37(2), pages 277-287, April.
    11. Inderfurth, Karl & Minner, Stefan, 1998. "Safety stocks in multi-stage inventory systems under different service measures," European Journal of Operational Research, Elsevier, vol. 106(1), pages 57-73, April.
    12. Ravi Anupindi & Ram Akella, 1993. "Diversification Under Supply Uncertainty," Management Science, INFORMS, vol. 39(8), pages 944-963, August.
    13. Diks, E. B. & de Kok, A. G. & Lagodimos, A. G., 1996. "Multi-echelon systems: A service measure perspective," European Journal of Operational Research, Elsevier, vol. 95(2), pages 241-263, December.
    14. Stephen C. Graves, 1996. "A Multiechelon Inventory Model with Fixed Replenishment Intervals," Management Science, INFORMS, vol. 42(1), pages 1-18, January.
    15. Frank W. Ciarallo & Ramakrishna Akella & Thomas E. Morton, 1994. "A Periodic Review, Production Planning Model with Uncertain Capacity and Uncertain Demand---Optimality of Extended Myopic Policies," Management Science, INFORMS, vol. 40(3), pages 320-332, March.
    16. Gurnani, Haresh, 1996. "Optimal ordering policies in inventory systems with random demand and random deal offerings," European Journal of Operational Research, Elsevier, vol. 95(2), pages 299-312, December.
    17. Markus Ettl & Gerald E. Feigin & Grace Y. Lin & David D. Yao, 2000. "A Supply Network Model with Base-Stock Control and Service Requirements," Operations Research, INFORMS, vol. 48(2), pages 216-232, April.
    18. Hau L. Lee & Corey Billington, 1993. "Material Management in Decentralized Supply Chains," Operations Research, INFORMS, vol. 41(5), pages 835-847, October.
    19. Lawrence W. Robinson & James R. Bradley & L. Joseph Thomas, 2001. "Consequences of Order Crossover Under Order-Up-To Inventory Policies," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 175-188, September.
    20. Jing-Sheng Song & Candace A. Yano & Panupol Lerssrisuriya, 2000. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 2(3), pages 287-296, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Eruguz, Ayse Sena & Sahin, Evren & Jemai, Zied & Dallery, Yves, 2016. "A comprehensive survey of guaranteed-service models for multi-echelon inventory optimization," International Journal of Production Economics, Elsevier, vol. 172(C), pages 110-125.
    3. Liming Liu & Xiaoming Liu & David D. Yao, 2004. "Analysis and Optimization of a Multistage Inventory-Queue System," Management Science, INFORMS, vol. 50(3), pages 365-380, March.
    4. Salal Humair & Sean P. Willems, 2006. "Optimizing Strategic Safety Stock Placement in Supply Chains with Clusters of Commonality," Operations Research, INFORMS, vol. 54(4), pages 725-742, August.
    5. David G. Lawson & Evan L. Porteus, 2000. "Multistage Inventory Management with Expediting," Operations Research, INFORMS, vol. 48(6), pages 878-893, December.
    6. Mekhtiev, Mirza Arif, 2013. "Analytical evaluation of lead-time demand in polytree supply chains with uncertain demand, lead-time and inter-demand time," International Journal of Production Economics, Elsevier, vol. 145(1), pages 304-317.
    7. Stephen C. Graves & Sean P. Willems, 2000. "Optimizing Strategic Safety Stock Placement in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 68-83, June.
    8. David Simchi-Levi & Yao Zhao, 2005. "Safety Stock Positioning in Supply Chains with Stochastic Lead Times," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 295-318, December.
    9. Kaminsky, Philip & Kaya, Onur, 2008. "Inventory positioning, scheduling and lead-time quotation in supply chains," International Journal of Production Economics, Elsevier, vol. 114(1), pages 276-293, July.
    10. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    11. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    12. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    13. Kevin H. Shang & Jing-Sheng Song, 2006. "A Closed-Form Approximation for Serial Inventory Systems and Its Application to System Design," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 394-406, September.
    14. van Houtum, G. J. & Inderfurth, K. & Zijm, W. H. M., 1996. "Materials coordination in stochastic multi-echelon systems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 1-23, November.
    15. Albrecht, Martin, 2014. "Determining near optimal base-stock levels in two-stage general inventory systems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 342-349.
    16. Salal Humair & John D. Ruark & Brian Tomlin & Sean P. Willems, 2013. "Incorporating Stochastic Lead Times Into the Guaranteed Service Model of Safety Stock Optimization," Interfaces, INFORMS, vol. 43(5), pages 421-434, October.
    17. Jing-Sheng Song & Candace A. Yano & Panupol Lerssrisuriya, 2000. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 2(3), pages 287-296, July.
    18. Sven Axsäter, 2003. "Note: Optimal Policies for Serial Inventory Systems Under Fill Rate Constraints," Management Science, INFORMS, vol. 49(2), pages 247-253, February.
    19. Tamer Boyaci & Guillermo Gallego, 2001. "Serial Production/Distribution Systems Under Service Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 43-50, June.
    20. Vanteddu, Gangaraju & Chinnam, Ratna Babu & Gushikin, Oleg, 2011. "Supply chain focus dependent supplier selection problem," International Journal of Production Economics, Elsevier, vol. 129(1), pages 204-216, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:50:y:2004:i:12:p:1729-1743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.