IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v32y1986i9p1153-1163.html
   My bibliography  Save this article

Optimal Capacity Expansion Planning When There are Learning Effects

Author

Listed:
  • Randall S. Hiller

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Jeremy F. Shapiro

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Production and capacity expansion decisions are difficult to analyze when there is learning. Later production is less costly, and maybe more profitable, but the company must endure high initial production costs. Mixed integer programming models are presented for optimizing coordinated production and capacity expansion plans in the face of such learning effects. An illustrative model is developed, optimized, and the types of strategies it selects are discussed.

Suggested Citation

  • Randall S. Hiller & Jeremy F. Shapiro, 1986. "Optimal Capacity Expansion Planning When There are Learning Effects," Management Science, INFORMS, vol. 32(9), pages 1153-1163, September.
  • Handle: RePEc:inm:ormnsc:v:32:y:1986:i:9:p:1153-1163
    DOI: 10.1287/mnsc.32.9.1153
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.32.9.1153
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.32.9.1153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Chia-Yen & Charles, Vincent, 2022. "A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret," European Journal of Operational Research, Elsevier, vol. 296(2), pages 557-569.
    2. Bradley, James R., 2005. "Optimal control of a dual service rate M/M/1 production-inventory model," European Journal of Operational Research, Elsevier, vol. 161(3), pages 812-837, March.
    3. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    4. Mazzola, Joseph B. & Neebe, Alan W. & Rump, Christopher M., 1998. "Multiproduct production planning in the presence of work-force learning," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 336-356, April.
    5. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    6. Cantamessa, Marco & Valentini, Carlo, 2000. "Planning and managing manufacturing capacity when demand is subject to diffusion effects," International Journal of Production Economics, Elsevier, vol. 66(3), pages 227-240, July.
    7. Sun, Xiaojie & Tang, Wansheng & Zhang, Jianxiong & Chen, Jing, 2021. "The impact of quantity-based cost decline on supplier encroachment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    8. Wei Zhang & Long Gao & Mohammad Zolghadr & Dawei Jian & Mohsen ElHafsi, 2023. "Dynamic incentives for sustainable contract farming," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2049-2067, July.
    9. Ben Klemens, 2021. "Attributing Value to Patents and Trademarks in Complex Production Chains," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 842-875, June.
    10. Metin Çakanyıldırım & Robin O. Roundy & Samuel C. Wood, 2004. "Optimal machine capacity expansions with nested limitations under stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 217-241, March.
    11. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    12. Stephen Shum & Shilu Tong & Tingting Xiao, 2017. "On the Impact of Uncertain Cost Reduction When Selling to Strategic Customers," Management Science, INFORMS, vol. 63(3), pages 843-860, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:32:y:1986:i:9:p:1153-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.