IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v52y2022i2p109-132.html
   My bibliography  Save this article

Operations Research in Underground Mine Planning: A Review

Author

Listed:
  • Akshay Chowdu

    (Department of Mining Engineering and Management, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701)

  • Peter Nesbitt

    (Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado 80401)

  • Andrea Brickey

    (Department of Mining Engineering and Management, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701)

  • Alexandra M. Newman

    (Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado 80401)

Abstract

At the time of this writing, the U.S. Geological Survey estimates that the average American-born human will need millions of pounds of fuels, minerals, and other extracted resources in his or her lifetime. Mining is a critical global industry, spanning all but one continent (Antarctica), with the highest-producing countries being China, the United States, Russia, Australia, and India. Increasingly, this demand is driving mining companies to explore and pursue deeper mineral deposits as near-surface deposits deplete. Correspondingly, there has been a significant rise in industry interest in applying operations research techniques to improve underground mine planning. Newman et al. [Newman AM, Rubio E, Caro R, Weintraub A, Eurek K (2010) A review of operations research in mine planning. Interfaces 40(3):222–245] present a review of such techniques, applied to both open pit and underground mining operations. We focus here on the advancements since that publication and concentrate on underground applications in metalliferous deposits, such as copper, iron, and gold.

Suggested Citation

  • Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
  • Handle: RePEc:inm:orinte:v:52:y:2022:i:2:p:109-132
    DOI: 10.1287/inte.2021.1087
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2021.1087
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2021.1087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    2. Whittle, D. & Brazil, M. & Grossman, P.A. & Rubinstein, J.H. & Thomas, D.A., 2018. "Combined optimisation of an open-pit mine outline and the transition depth to underground mining," European Journal of Operational Research, Elsevier, vol. 268(2), pages 624-634.
    3. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    4. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    5. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    6. Marcus Brazil & Peter Grossman & J. Hyam Rubinstein & Doreen Thomas, 2014. "Improving Underground Mine Access Layouts Using Software Tools," Interfaces, INFORMS, vol. 44(2), pages 195-203, April.
    7. Christopher Alford & Marcus Brazil & David H. Lee, 2007. "Optimisation in Underground Mining," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 561-577, Springer.
    8. K. Sirinanda & M. Brazil & P. Grossman & J. Rubinstein & D. Thomas, 2016. "Gradient-constrained discounted Steiner trees II: optimally locating a discounted Steiner point," Journal of Global Optimization, Springer, vol. 64(3), pages 515-532, March.
    9. Dónal O’Sullivan & Alexandra Newman, 2014. "Extraction and Backfill Scheduling in a Complex Underground Mine," Interfaces, INFORMS, vol. 44(2), pages 204-221, April.
    10. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    11. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "A new proposal for fusing individual preference orderings by rank-ordered agents: A generalization of the Yager's algorithm," European Journal of Operational Research, Elsevier, vol. 249(1), pages 209-223.
    12. Martinez, Michael A. & Newman, Alexandra M., 2011. "A solution approach for optimizing long- and short-term production scheduling at LKAB's Kiruna mine," European Journal of Operational Research, Elsevier, vol. 211(1), pages 184-197, May.
    13. Alexandra Newman & Candace Yano & Enrique Rubio, 2013. "Mining above and below ground: timing the transition," IISE Transactions, Taylor & Francis Journals, vol. 45(8), pages 865-882.
    14. Peter Nesbitt & Levente Sipeki & Tulay Flamand & Alexandra M. Newman, 2020. "Optimizing underground mine design with method-dependent precedences," IISE Transactions, Taylor & Francis Journals, vol. 53(6), pages 643-656, November.
    15. Barry King & Alexandra Newman, 2018. "Optimizing the Cutoff Grade for an Operational Underground Mine," Interfaces, INFORMS, vol. 48(4), pages 357-371, August.
    16. Foroughi, Sorayya & Hamidi, Jafar Khademi & Monjezi, Masoud & Nehring, Micah, 2019. "The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II)," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    17. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    18. Levente Sipeki & Alexandra M. Newman & Candace A. Yano, 2020. "Selecting support pillars in underground mines with ore veins," IISE Transactions, Taylor & Francis Journals, vol. 52(10), pages 1173-1188, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    2. Barry King & Alexandra Newman, 2018. "Optimizing the Cutoff Grade for an Operational Underground Mine," Interfaces, INFORMS, vol. 48(4), pages 357-371, August.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    5. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
    6. Siyu Tu & Mingtao Jia & Liguan Wang & Shuzhao Feng & Shuang Huang, 2022. "A Multi-Equipment Task Assignment Model for the Horizontal Stripe Pre-Cut Mining Method," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    7. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    8. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    9. Khaboushan, A.Soltani & Osanloo, M., 2020. "Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving," Resources Policy, Elsevier, vol. 68(C).
    10. Furtado e Faria, Matheus & Dimitrakopoulos, Roussos & Lopes Pinto, Cláudio Lúcio, 2022. "Integrated stochastic optimization of stope design and long-term underground mine production scheduling," Resources Policy, Elsevier, vol. 78(C).
    11. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    12. Sotoudeh, Farzad & Nehring, Micah & Kizil, Mehmet & Knights, Peter & Mousavi, Amin, 2020. "Production scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directions," Resources Policy, Elsevier, vol. 68(C).
    13. Alessandro Hill & Andrea J. Brickey & Italo Cipriano & Marcos Goycoolea & Alexandra Newman, 2022. "Optimization Strategies for Resource-Constrained Project Scheduling Problems in Underground Mining," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3042-3058, November.
    14. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    15. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    16. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    17. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    18. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    19. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    20. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:52:y:2022:i:2:p:109-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.