IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v49y2019i2p129-136.html
   My bibliography  Save this article

NeatWork: A Tool for the Design of Gravity-Driven Water Distribution Systems for Poor Rural Communities

Author

Listed:
  • Frédéric Babonneau

    (Ordecsys, 1224 Chêne-Bougeries, Switzerland; Business School, Adolfo Ibañez University, 7910000 Santiago, Chile)

  • Gilles Corcos

    (University of California, Berkeley, Berkeley, California 94720; Agua Para La Vida, Berkeley, California 94705)

  • Laurent Drouet

    (Resources for the Future–Centro Euro-Mediterraneo sui Cambiamenti Climatici, European Institute in Economics and the Environment, 20144 Milan, Italy)

  • Jean-Philippe Vial

    (Ordecsys, 1224 Chêne-Bougeries, Switzerland; University of Geneva, 1211 Geneva, Switzerland)

Abstract

NeatWork is an optimization and simulation tool for the design of purely gravity-driven water-distribution systems with the objective of delivering clean water to poor rural communities. NeatWork proposes a heuristic approach for the design of least-cost systems under stochastic intermittent water demands, in which devices, such as pumps and pressure regulators, which are operated by humans and commonly used to control pressures and flows, are excluded. The resulting designs are thus as simple and as robust as possible to operate, and the operating, maintenance, and investment costs are kept as low as possible, an important requirement in poor rural communities. We illustrate the application of NeatWork on a typical project implemented by Agua Para La Vida, the nongovernmental organization currently using the tool for its activities in Nicaragua.

Suggested Citation

  • Frédéric Babonneau & Gilles Corcos & Laurent Drouet & Jean-Philippe Vial, 2019. "NeatWork: A Tool for the Design of Gravity-Driven Water Distribution Systems for Poor Rural Communities," Interfaces, INFORMS, vol. 49(2), pages 129-136, March.
  • Handle: RePEc:inm:orinte:v:49:y:2019:i:2:p:129-136
    DOI: 10.1287/inte.2018.0983
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2018.0983
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2018.0983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    4. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    5. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    6. Jesco Humpola & Armin Fügenschuh, 2015. "Convex reformulations for solving a nonlinear network design problem," Computational Optimization and Applications, Springer, vol. 62(3), pages 717-759, December.
    7. Mengying Xue & Tianhu Deng & Dingzhi Liu, 2016. "CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines," Interfaces, INFORMS, vol. 46(6), pages 533-546, December.
    8. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    9. Sergei Schreider & Jonathan Plummer & Daniel McInnes & Boris Miller, 2015. "Sensitivity analysis of gas supply optimization models," Annals of Operations Research, Springer, vol. 226(1), pages 565-588, March.
    10. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    11. André, Jean & Auray, Stéphane & Brac, Jean & De Wolf, Daniel & Maisonnier, Guy & Ould-Sidi, Mohamed-Mahmoud & Simonnet, Antoine, 2013. "Design and dimensioning of hydrogen transmission pipeline networks," European Journal of Operational Research, Elsevier, vol. 229(1), pages 239-251.
    12. Ríos-Mercado, Roger Z. & Borraz-Sánchez, Conrado, 2015. "Optimization problems in natural gas transportation systems: A state-of-the-art review," Applied Energy, Elsevier, vol. 147(C), pages 536-555.
    13. Wang, Cheng & Wei, Wei & Wang, Jianhui & Bi, Tianshu, 2019. "Convex optimization based adjustable robust dispatch for integrated electric-gas systems considering gas delivery priority," Applied Energy, Elsevier, vol. 239(C), pages 70-82.
    14. Chertkov, Michael & Backhaus, Scott & Lebedev, Vladimir, 2015. "Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling," Applied Energy, Elsevier, vol. 160(C), pages 541-551.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:49:y:2019:i:2:p:129-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.