IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v36y2006i4p302-313.html
   My bibliography  Save this article

The Missouri Lottery Optimizes Its Scheduling and Routing to Improve Efficiency and Balance

Author

Listed:
  • Wooseung Jang

    (Department of Industrial and Manufacturing Systems Engineering, University of Missouri--Columbia, Columbia, Missouri 65211)

  • Huay H. Lim

    (Department of Industrial and Manufacturing Systems Engineering, University of Missouri--Columbia, Columbia, Missouri 65211)

  • Thomas J. Crowe

    (Department of Industrial and Manufacturing Systems Engineering, University of Missouri--Columbia, Columbia, Missouri 65211)

  • Gail Raskin

    (The Missouri Lottery, 1823 Southridge Drive, Jefferson City, Missouri 65109)

  • Thomas E. Perkins

    (The Missouri Lottery, 1823 Southridge Drive, Jefferson City, Missouri 65109)

Abstract

The Missouri lottery, a profit-driven nonprofit organization, generates annual revenues of over $800 million by selling lottery tickets; 27.5 percent of the revenue goes to Missouri’s public education programs. The lottery sales representatives (LSRs) play a central role in increasing sales by providing excellent customer service to ticket retailers throughout the state. Hence, LSRs must have equitable, balanced work schedules and efficient routes and navigation sequences. Our objective was to provide scheduling and routing policies that minimize LSRs’ total travel distance while balancing their workloads and meeting visitation constraints. We modeled the problem as a periodic traveling-salesman problem and developed improvement algorithms specifically to solve this problem. The newly implemented schedules and routes decrease the LSRs’ travel distance by 15 percent, improve visitation feasibility by 46 percent, increase the balance of routes by 63 percent, decrease overtime days by 32 percent, and indirectly increase the sales of lottery tickets by improving customer service.

Suggested Citation

  • Wooseung Jang & Huay H. Lim & Thomas J. Crowe & Gail Raskin & Thomas E. Perkins, 2006. "The Missouri Lottery Optimizes Its Scheduling and Routing to Improve Efficiency and Balance," Interfaces, INFORMS, vol. 36(4), pages 302-313, August.
  • Handle: RePEc:inm:orinte:v:36:y:2006:i:4:p:302-313
    DOI: 10.1287/inte.1060.0204
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1060.0204
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1060.0204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Poot, A. & Kant, G. & Wagelmans, A.P.M., 1999. "A savings based method for real-life vehicle routing problems," Econometric Institute Research Papers EI 9938/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    3. Thomas R. Sexton & Sally Sleeper & Robert E. Taggart, 1994. "Improving Pupil Transportation in North Carolina," Interfaces, INFORMS, vol. 24(1), pages 87-103, February.
    4. Surya Sahoo & Seongbae Kim & Byung-In Kim & Bob Kraas & Alexander Popov, 2005. "Routing Optimization for Waste Management," Interfaces, INFORMS, vol. 35(1), pages 24-36, February.
    5. Don Weigel & Buyang Cao, 1999. "Applying GIS and OR Techniques to Solve Sears Technician-Dispatching and Home Delivery Problems," Interfaces, INFORMS, vol. 29(1), pages 112-130, February.
    6. Mulvey, John M. & Beck, Michael P., 1984. "Solving capacitated clustering problems," European Journal of Operational Research, Elsevier, vol. 18(3), pages 339-348, December.
    7. Koskosidis, Yiannis A. & Powell, Warren B., 1992. "Clustering algorithms for consolidation of customer orders into vehicle shipments," Transportation Research Part B: Methodological, Elsevier, vol. 26(5), pages 365-379, October.
    8. Sachidanand V. Begur & David M. Miller & Jerry R. Weaver, 1997. "An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses," Interfaces, INFORMS, vol. 27(4), pages 35-48, August.
    9. Belarmino Adenso-Díaz & Mónica González & Emérita García, 1998. "A Hierarchical Approach to Managing Dairy Routing," Interfaces, INFORMS, vol. 28(2), pages 21-31, April.
    10. Ephraim Martin, 1998. "Centralized Bakery Reduces Distribution Costs Using Simulation," Interfaces, INFORMS, vol. 28(4), pages 38-46, August.
    11. Erhan Erkut & Tony Myroon & Kevin Strangway, 2000. "TransAlta Redesigns Its Service-Delivery Network," Interfaces, INFORMS, vol. 30(2), pages 54-69, April.
    12. Andres Weintraub & Rafael Epstein & Ramiro Morales & Jorge Seron & Pier Traverso, 1996. "A Truck Scheduling System Improves Efficiency in the Forest Industries," Interfaces, INFORMS, vol. 26(4), pages 1-12, August.
    13. Fred Blakeley & Burçin Argüello & Buyang Cao & Wolfgang Hall & Joseph Knolmajer, 2003. "Optimizing Periodic Maintenance Operations for Schindler Elevator Corporation," Interfaces, INFORMS, vol. 33(1), pages 67-79, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    2. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    3. Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José & Yaman, Hande, 2019. "The periodic vehicle routing problem with driver consistency," European Journal of Operational Research, Elsevier, vol. 273(2), pages 575-584.
    4. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    5. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    6. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.
    7. Jens Van Engeland & Jeroen Beliën, 2021. "Tactical waste collection: column generation and mixed integer programming based heuristics," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 89-126, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Bowers & Helen Cheyne & Gillian Mould & Miranda Page, 2015. "Continuity of care in community midwifery," Health Care Management Science, Springer, vol. 18(2), pages 195-204, June.
    2. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 0. "An approximation algorithm for the uniform capacitated k-means problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    3. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    4. Patrik Eveborn & Mikael Rönnqvist & Helga Einarsdóttir & Mats Eklund & Karin Lidén & Marie Almroth, 2009. "Operations Research Improves Quality and Efficiency in Home Care," Interfaces, INFORMS, vol. 39(1), pages 18-34, February.
    5. A I Jarrah & J F Bard, 2011. "Pickup and delivery network segmentation using contiguous geographic clustering," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1827-1843, October.
    6. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    7. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Javier Faulin & Pablo Sarobe & Jorge Simal, 2005. "The DSS LOGDIS Optimizes Delivery Routes for FRILAC’s Frozen Products," Interfaces, INFORMS, vol. 35(3), pages 202-214, June.
    9. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    10. Belarmino Adenso-Díaz & Mónica González & Emérita García, 1998. "A Hierarchical Approach to Managing Dairy Routing," Interfaces, INFORMS, vol. 28(2), pages 21-31, April.
    11. Scheuerer, Stephan & Wendolsky, Rolf, 2006. "A scatter search heuristic for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 533-547, March.
    12. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    13. Cavada, Juan P. & Cortés, Cristián E. & Goic, Marcel & Weintraub, Andrés & Zambrano, Juan I., 2020. "Accounting for cost heterogeneity on the demand in the context of a technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 287(3), pages 820-831.
    14. Gayialis, Sotiris P. & Tatsiopoulos, Ilias P., 2004. "Design of an IT-driven decision support system for vehicle routing and scheduling," European Journal of Operational Research, Elsevier, vol. 152(2), pages 382-398, January.
    15. Ines Mathlouthi & Michel Gendreau & Jean-Yves Potvin, 2021. "Branch-and-Price for a Multi-attribute Technician Routing and Scheduling Problem," SN Operations Research Forum, Springer, vol. 2(1), pages 1-35, March.
    16. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 2022. "An approximation algorithm for the uniform capacitated k-means problem," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1812-1823, October.
    17. Cortés, Cristián E. & Gendreau, Michel & Rousseau, Louis Martin & Souyris, Sebastián & Weintraub, Andrés, 2014. "Branch-and-price and constraint programming for solving a real-life technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 300-312.
    18. I H Osman & S Ahmadi, 2007. "Guided construction search metaheuristics for the capacitated p-median problem with single source constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 100-114, January.
    19. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    20. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:36:y:2006:i:4:p:302-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.