IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v30y2000i2p1-12.html
   My bibliography  Save this article

Using Mixed-Integer Programming to Reduce Label Changes in the Coors Aluminum Can Plant

Author

Listed:
  • Elena Katok

    (Department of Management Science and Information Systems, Penn State University, University Park, Pennsylvania 16802)

  • Dennis Ott

    (Coors Brewing Company, Golden, Colorado 80401)

Abstract

Valley Metal Container (VMC), a joint venture between the Coors Brewing Company and American National Can, operates the world's largest single-site facility for aluminum can production. Located in Golden, Colorado, the plant manufactures over 4 billion cans per year on six production lines. Coors Brewery produces seven products, each requiring a distinct label. We developed an optimization-based decision support system with a spreadsheet user interface that helps VMC planners to determine the weekly can production schedule, aiming to meet brewery demand while minimizing the number of label changes and related costs. VMC has been using the new system since October 1998 and estimates the reduction in direct costs (scrap, labor, and inventory) at over $150,000 per year.

Suggested Citation

  • Elena Katok & Dennis Ott, 2000. "Using Mixed-Integer Programming to Reduce Label Changes in the Coors Aluminum Can Plant," Interfaces, INFORMS, vol. 30(2), pages 1-12, April.
  • Handle: RePEc:inm:orinte:v:30:y:2000:i:2:p:1-12
    DOI: 10.1287/inte.30.2.1.11679
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.30.2.1.11679
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.30.2.1.11679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maes, Johan & McClain, John O. & Van Wassenhove, Luk N., 1991. "Multilevel capacitated lotsizing complexity and LP-based heuristics," European Journal of Operational Research, Elsevier, vol. 53(2), pages 131-148, July.
    2. Elena Katok & Holly S. Lewis & Terry P. Harrison, 1998. "Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources," Management Science, INFORMS, vol. 44(6), pages 859-877, June.
    3. Peter J. Billington & John O. McClain & L. Joseph Thomas, 1983. "Mathematical Programming Approaches to Capacity-Constrained MRP Systems: Review, Formulation and Problem Reduction," Management Science, INFORMS, vol. 29(10), pages 1126-1141, October.
    4. Terry P. Harrison & Holly S. Lewis, 1996. "Lot Sizing in Serial Assembly Systems with Multiple Constrained Resources," Management Science, INFORMS, vol. 42(1), pages 19-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    2. Hartmut Stadtler, 2003. "Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows," Operations Research, INFORMS, vol. 51(3), pages 487-502, June.
    3. Sarker, Bhaba R. & Diponegoro, Ahmad, 2009. "Optimal production plans and shipment schedules in a supply-chain system with multiple suppliers and multiple buyers," European Journal of Operational Research, Elsevier, vol. 194(3), pages 753-773, May.
    4. Elena Katok & Holly S. Lewis & Terry P. Harrison, 1998. "Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources," Management Science, INFORMS, vol. 44(6), pages 859-877, June.
    5. Yves Pochet & Mathieu Van Vyve, 2004. "A General Heuristic for Production Planning Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 316-327, August.
    6. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    7. Berretta, Regina & Rodrigues, Luiz Fernando, 2004. "A memetic algorithm for a multistage capacitated lot-sizing problem," International Journal of Production Economics, Elsevier, vol. 87(1), pages 67-81, January.
    8. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    9. Erenguc, S. Selcuk & Simpson, N. C. & Vakharia, Asoo J., 1999. "Integrated production/distribution planning in supply chains: An invited review," European Journal of Operational Research, Elsevier, vol. 115(2), pages 219-236, June.
    10. Marcos Mansano Furlan & Maristela Oliveira Santos, 2017. "BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 929-944, April.
    11. Huang, Hai-Jun & Xu, Gang, 1998. "Aggregate scheduling and network solving of multi-stage and multi-item manufacturing systems," European Journal of Operational Research, Elsevier, vol. 105(1), pages 52-65, February.
    12. Drexl, Andreas & Fleischmann, B. & Günther, H.-O. & Stadtler, H. & Tempelmeier, H., 1993. "Konzeptionelle Grundlagen kapazitätsorientierter PPS-Systeme," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 315, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Stadtler, Hartmut, 1996. "Mixed integer programming model formulations for dynamic multi-item multi-level capacitated lotsizing," European Journal of Operational Research, Elsevier, vol. 94(3), pages 561-581, November.
    14. Simpson, N. C., 1999. "Multiple level production planning in rolling horizon assembly environments," European Journal of Operational Research, Elsevier, vol. 114(1), pages 15-28, April.
    15. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    16. Süral, Haldun & Denizel, Meltem & Van Wassenhove, Luk N., 2009. "Lagrangean relaxation based heuristics for lot sizing with setup times," European Journal of Operational Research, Elsevier, vol. 194(1), pages 51-63, April.
    17. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    18. Almeder, Christian & Klabjan, Diego & Traxler, Renate & Almada-Lobo, Bernardo, 2015. "Lead time considerations for the multi-level capacitated lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 727-738.
    19. dos Santos-Meza, Elisangela & Oliveira dos Santos, Maristela & Nereu Arenales, Marcos, 2002. "A lot-sizing problem in an automated foundry," European Journal of Operational Research, Elsevier, vol. 139(3), pages 490-500, June.
    20. Drexl, Andreas & Haase, Knut, 1992. "A new type of model for multi-item capacitated dynamic lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 286, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:30:y:2000:i:2:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.