IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i3p543-559.html
   My bibliography  Save this article

Decomposition Strategies for Vehicle Routing Heuristics

Author

Listed:
  • Alberto Santini

    (Department of Economics and Business, Universitat Pompeu Fabra, 08005 Barcelona, Spain; Data Science Centre, Barcelona School of Economics, 08005 Barcelona, Spain; Department of Information Systems, Decision Sciences and Statistics, ESSEC Business School, 95021 Cergy, France; Institute of Advanced Studies, Cergy Paris Université, 95000 Neuville-sur-Oise, France)

  • Michael Schneider

    (Deutsche Post Chair—Optimization of Distribution Networks, RWTH Aachen University, 52072 Aachen, Germany)

  • Thibaut Vidal

    (CIRRELT, Montréal, Québec H3T1J4, Canada; Scale AI Chair in Data-Driven Supply Chains, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada; Department of Computer Science, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 38097, Brazil)

  • Daniele Vigo

    (Department of Electrical, Electronic and Information Engineering, Alma Mater University of Bologna, Bologna 40136, Italy; CIRI-ICT, Alma Mater University of Bologna, 47521 Cesena, Italy)

Abstract

Decomposition techniques are an important component of modern heuristics for large instances of vehicle routing problems. The current literature lacks a characterization of decomposition strategies and a systematic investigation of their impact when integrated into state-of-the-art heuristics. This paper fills this gap: We discuss the main characteristics of decomposition techniques in vehicle routing heuristics, highlight their strengths and weaknesses, and derive a set of desirable properties. Through an extensive numerical campaign, we investigate the impact of decompositions within two algorithms for the capacitated vehicle routing problem: the Adaptive Large Neighborhood Search of Pisinger and Ropke (2007 ) and the Hybrid Genetic Search of Vidal et al. (2012 ). We evaluate the quality of popular decomposition techniques from the literature and propose new strategies. We find that route-based decomposition methods, which define subproblems by means of the customers contained in selected subsets of the routes of a given solution, generally appear superior to path-based methods, which merge groups of customers to obtain smaller subproblems. The newly proposed decomposition barycenter clustering achieves the overall best performance and leads to significant gains compared with using the algorithms without decomposition.

Suggested Citation

  • Alberto Santini & Michael Schneider & Thibaut Vidal & Daniele Vigo, 2023. "Decomposition Strategies for Vehicle Routing Heuristics," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 543-559, May.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:3:p:543-559
    DOI: 10.1287/ijoc.2023.1288
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.1288
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.1288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    2. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    3. Lahrichi, Nadia & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter & Crişan, Gloria Cerasela & Vidal, Thibaut, 2015. "An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: Application to the MDPVRP," European Journal of Operational Research, Elsevier, vol. 246(2), pages 400-412.
    4. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    5. Thibaut Vidal, 2017. "Node, Edge, Arc Routing and Turn Penalties: Multiple Problems—One Neighborhood Extension," Operations Research, INFORMS, vol. 65(4), pages 992-1010, August.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    7. Alberto Santini & Stefan Ropke & Lars Magnus Hvattum, 2018. "A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic," Journal of Heuristics, Springer, vol. 24(5), pages 783-815, October.
    8. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    9. Chris Groër & Bruce Golden & Edward Wasil, 2011. "A Parallel Algorithm for the Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 315-330, May.
    10. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    11. Gale Young & A. Householder, 1938. "Discussion of a set of points in terms of their mutual distances," Psychometrika, Springer;The Psychometric Society, vol. 3(1), pages 19-22, March.
    12. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Taillard, Éric D. & Helsgaun, Keld, 2019. "POPMUSIC for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 420-429.
    15. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    2. Thibaut Vidal & Rafael Martinelli & Tuan Anh Pham & Minh Hoàng Hà, 2021. "Arc Routing with Time-Dependent Travel Times and Paths," Transportation Science, INFORMS, vol. 55(3), pages 706-724, May.
    3. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    4. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    5. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    6. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    7. Miao Yu & Viswanath Nagarajan & Siqian Shen, 2022. "Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 953-973, March.
    8. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    9. Máximo, Vinícius R. & Nascimento, Mariá C.V., 2021. "A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1108-1119.
    10. Thibaut Vidal, 2017. "Node, Edge, Arc Routing and Turn Penalties: Multiple Problems—One Neighborhood Extension," Operations Research, INFORMS, vol. 65(4), pages 992-1010, August.
    11. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    12. Homsi, Gabriel & Martinelli, Rafael & Vidal, Thibaut & Fagerholt, Kjetil, 2020. "Industrial and tramp ship routing problems: Closing the gap for real-scale instances," European Journal of Operational Research, Elsevier, vol. 283(3), pages 972-990.
    13. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    14. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    15. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    16. Alfandari, Laurent & Ljubić, Ivana & De Melo da Silva, Marcos, 2022. "A tailored Benders decomposition approach for last-mile delivery with autonomous robots," European Journal of Operational Research, Elsevier, vol. 299(2), pages 510-525.
    17. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    18. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    19. Soriano, Adria & Vidal, Thibaut & Gansterer, Margaretha & Doerner, Karl, 2020. "The vehicle routing problem with arrival time diversification on a multigraph," European Journal of Operational Research, Elsevier, vol. 286(2), pages 564-575.
    20. Thomas Borthen & Henrik Loennechen & Xin Wang & Kjetil Fagerholt & Thibaut Vidal, 2018. "A genetic search-based heuristic for a fleet size and periodic routing problem with application to offshore supply planning," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 121-150, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:3:p:543-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.