IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i6p3170-3180.html
   My bibliography  Save this article

Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness

Author

Listed:
  • Gordon B. Hazen

    (Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

Markov cohort analysis is a popular deterministic method in medical decision making for calculating mean outcomes in a Markov model by following a cohort of individuals through time. At present, obtaining outcome variances requires either forsaking cohort analysis in favor of a Markov decision process model or using Monte Carlo simulation (microsimulation), a more computationally demanding procedure that provides only statistical estimates. Here we derive an augmented version of cohort analysis that allows exact computation (not merely estimation) of (co)variances. In second-order models that incorporate parameter uncertainty, augmented cohort analysis can replace the “inner loop” required in Monte Carlo simulation, resulting in quicker and more accurate estimates.One reason for computing variances is to calculate a measure of the strength of an affirmative cost-effectiveness conclusion. In Markov cost-effectiveness analysis, an equivalent measure of cost-effectiveness is positivity of the expected incremental net monetary benefit . Augmented cohort analysis allows calculation of the number of standard deviations that this quantity falls above zero. As a measure of strength of cost-effectiveness, this quantity increases with cohort size. This means that the common practice of taking cohort size to be one can substantially underestimate the strength of a resulting cost-effectiveness conclusion under realistically large cohorts. Moreover, if realistic cohort size is large, then modelers can avoid microsimulation by using augmented cohort analysis and Chebyshev bounds to guarantee the probability of cost effectiveness is close to one.

Suggested Citation

  • Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3170-3180
    DOI: 10.1287/ijoc.2022.1234
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1234
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J.Robert Beck & Stephen G. Pauker, 1983. "The Markov Process in Medical Prognosis," Medical Decision Making, , vol. 3(4), pages 419-458, December.
    2. Jan J. Barendregt, 2009. "The Half-Cycle Correction: Banish Rather Than Explain It," Medical Decision Making, , vol. 29(4), pages 500-502, July.
    3. Jerzy A. Filar & L. C. M. Kallenberg & Huey-Miin Lee, 1989. "Variance-Penalized Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 14(1), pages 147-161, February.
    4. Rowan Iskandar, 2018. "A theoretical foundation for state-transition cohort models in health decision analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-11, December.
    5. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    6. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    2. Simon Frey & Roland Linder & Georg Juckel & Tom Stargardt, 2014. "Cost-effectiveness of long-acting injectable risperidone versus flupentixol decanoate in the treatment of schizophrenia: a Markov model parameterized using administrative data," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(2), pages 133-142, March.
    3. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    5. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    6. Hiral Anil Shah & Tim Baker & Carl Otto Schell & August Kuwawenaruwa & Khamis Awadh & Karima Khalid & Angela Kairu & Vincent Were & Edwine Barasa & Peter Baker & Lorna Guinness, 2023. "Cost Effectiveness of Strategies for Caring for Critically Ill Patients with COVID-19 in Tanzania," PharmacoEconomics - Open, Springer, vol. 7(4), pages 537-552, July.
    7. F. Tomini & F. Prinzen & A. D. I. Asselt, 2016. "A review of economic evaluation models for cardiac resynchronization therapy with implantable cardioverter defibrillators in patients with heart failure," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1159-1172, December.
    8. Elena Losina & Elizabeth E Dervan & A David Paltiel & Yan Dong & R John Wright & Kurt P Spindler & Lisa A Mandl & Morgan H Jones & Robert G Marx & Clare E Safran-Norton & Jeffrey N Katz, 2015. "Defining the Value of Future Research to Identify the Preferred Treatment of Meniscal Tear in the Presence of Knee Osteoarthritis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    9. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    10. Xudong Du & Mier Li & Ping Zhu & Ju Wang & Lisha Hou & Jijie Li & Hongdao Meng & Muke Zhou & Cairong Zhu, 2018. "Comparison of the flexible parametric survival model and Cox model in estimating Markov transition probabilities using real-world data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
    11. Mylene Lagarde & John Cairns, 2012. "Modelling human resources policies with Markov models: an illustration with the South African nursing labour market," Health Care Management Science, Springer, vol. 15(3), pages 270-282, September.
    12. Franck Maunoury & Anastasiia Motrunich & Maria Palka-Santini & Stéphanie F Bernatchez & Stéphane Ruckly & Jean-François Timsit, 2015. "Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    13. Rowan Iskandar, 2018. "A theoretical foundation for state-transition cohort models in health decision analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-11, December.
    14. Franck Maunoury & Christian Farinetto & Stéphane Ruckly & Jeremy Guenezan & Jean-Christophe Lucet & Alain Lepape & Julien Pascal & Bertrand Souweine & Olivier Mimoz & Jean-François Timsit, 2018. "Cost-effectiveness analysis of chlorhexidine-alcohol versus povidone iodine-alcohol solution in the prevention of intravascular-catheter-related bloodstream infections in France," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-16, May.
    15. Manouchehr Tavakoli & Neil Pumford & Mark Woodward & Alex Doney & John Chalmers & Stephen MacMahon & Ronald MacWalter, 2009. "An economic evaluation of a perindopril-based blood pressure lowering regimen for patients who have suffered a cerebrovascular event," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 10(1), pages 111-119, February.
    16. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    17. Aslam Anis & Huiying Sun & Sonia Singh & John Woolcott & Bohdan Nosyk & Marc Brisson, 2006. "A Cost-Utility Analysis of Losartan versus Atenolol in the Treatment of Hypertension with Left Ventricular Hypertrophy," PharmacoEconomics, Springer, vol. 24(4), pages 387-400, April.
    18. Teresa Cardoso & Mónica Oliveira & Ana Barbosa-Póvoa & Stefan Nickel, 2012. "Modeling the demand for long-term care services under uncertain information," Health Care Management Science, Springer, vol. 15(4), pages 385-412, December.
    19. Savvas S. Ioannou & Yiola Marcou & Eleni Kakouri & Michael A. Talias, 2020. "Real-World Setting Cost-Effectiveness Analysis Comparing Three Therapeutic Schemes of One-Year Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer from the Cyprus NHS Payer Perspective," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    20. Uwe Siebert & Gaby Sroczynski & Jürgen Wasem & Wolfgang Greiner & Ulrike Ravens-Sieberer & Pamela Aidelsburger & Bärbel Kurth & Monika Bullinger & J.-Matthias Schulenburg & John Wong & Siegbert Rossol, 2005. "Using competence network collaboration and decision-analytic modeling to assess the cost-effectiveness of interferon α-2b plus ribavirin as initial treatment of chronic hepatitis C in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(2), pages 112-123, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3170-3180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.