IDEAS home Printed from https://ideas.repec.org/a/igg/jhisi0/v16y2021i4p1-16.html
   My bibliography  Save this article

Day-Level Forecasting for Coronavirus Disease (COVID-19)

Author

Listed:
  • Wael K. Hanna

    (Sadat Academy for Management Sciences, Egypt)

  • Nouran M. Radwan

    (Sadat Academy for Management Sciences, Egypt)

Abstract

Corona virus (COVID-19) was recently spread quickly all over the world. Most infected people with the Corona virus may experience mild to moderate respiratory illness, but elderly people, and those with chronic diseases are more likely to suffer from serious disease, often leading to death. According to the Egyptian Ministry of Health, there are 96336 confirmed infected cases with Corona virus and 5141 confirmed deaths from the current outbreak. Accurate forecasting of the spread of confirmed and death cases as well as analysis of the number of infected and deaths are crucially required. The present study aims to explore the usage of support vector machine (SVM) in the prediction of coronavirus infected and death cases in Egypt which help in decision-making process. The forecasting model suggest that the number of coronavirus cases grows exponentially in Egypt and more efforts shall be directed to increase the public awareness with this disease. The proposed method is shown to achieve good accuracy and precision results.

Suggested Citation

  • Wael K. Hanna & Nouran M. Radwan, 2021. "Day-Level Forecasting for Coronavirus Disease (COVID-19)," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-16, October.
  • Handle: RePEc:igg:jhisi0:v:16:y:2021:i:4:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHISI.294115
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    2. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    3. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    4. Jorah Ramlan & Elsadig Musa Ahmed, 2009. "Information and Communication Technology (ICT) and human capital management trend in Malaysia's economic development," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1881-1886.
    5. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
    6. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    7. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    8. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    9. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    10. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    11. Ariel M. Viale & Jeff Madura, 2014. "Learning Banks' Exposure To Systematic Risk: Evidence From The Financial Crisis Of 2008," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 75-98, February.
    12. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    13. Kanas, Angelos & Kouretas, Georgios P., 2005. "A cointegration approach to the lead-lag effect among size-sorted equity portfolios," International Review of Economics & Finance, Elsevier, vol. 14(2), pages 181-201.
    14. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.
    15. Norman Swanson & Nii Ayi Armah, 2006. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 200619, Rutgers University, Department of Economics.
    16. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    17. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    18. Young Bin Ahn & Yoichi Tsuchiya, 2016. "Directional analysis of consumers’ forecasts of inflation in a small open economy: evidence from South Korea," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 854-864, February.
    19. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
    20. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jhisi0:v:16:y:2021:i:4:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.