IDEAS home Printed from https://ideas.repec.org/a/ids/ijmefi/v1y2008i2p121-148.html
   My bibliography  Save this article

Predictive performance of conditional Extreme Value Theory in Value-at-Risk estimation

Author

Listed:
  • Ahmed Ghorbel
  • Abdelwahed Trabelsi

Abstract

This paper conducts a comparative evaluation of the predictive performance of various Value-at-Risk (VaR) models. Special emphasis is paid to two methodologies related to the Extreme Value Theory (EVT): The Peaks Over Threshold (POT) and the Block Maxima (BM). We apply both unconditional and conditional EVT models to management of extreme market risks in stock markets. They are applied on daily returns of the BVMT and CAC 40 indices with the intention to compare the performance of various estimation methods on markets with different capitalisation and trading practices. The results we report demonstrate that conditional POT EVT method produces the most accurate forecasts of extreme losses both for standard and more extreme VaR quantiles. The conditional block maxima EVT method is less accurate.

Suggested Citation

  • Ahmed Ghorbel & Abdelwahed Trabelsi, 2008. "Predictive performance of conditional Extreme Value Theory in Value-at-Risk estimation," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 1(2), pages 121-148.
  • Handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:121-148
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=19218
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    2. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    3. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    4. Karmakar, Madhusudan, 2013. "Estimation of tail-related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, Elsevier, vol. 22(3), pages 79-85.
    5. Ourir, Awatef & Snoussi, Wafa, 2012. "Markets liquidity risk under extremal dependence: Analysis with VaRs methods," Economic Modelling, Elsevier, vol. 29(5), pages 1830-1836.
    6. Araújo Santos, P. & Fraga Alves, M.I., 2013. "Forecasting Value-at-Risk with a duration-based POT method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 295-309.
    7. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    8. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    9. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    10. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmefi:v:1:y:2008:i:2:p:121-148. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Darren Simpson). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=218 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.