IDEAS home Printed from https://ideas.repec.org/a/hur/ijaraf/v6y2016i1p94-99.html

A Comparison between Neural Networks and GARCH Models in Exchange Rate Forecasting

Author

Listed:
  • Fahima Charef

  • Fethi Ayachi

Abstract

Modeling and forecasting of dynamics nominal exchange rate has long been a focus of financial and economic research. Artificial Intelligence (IA) modeling has recently attracted much attention as a new technique in economic and financial forecasting. This paper proposes an alternative approach based on artificial neural network (ANN) to predict the daily exchange rates. Our empirical study is based on a series of daily data in Tunisia. In order to evaluate this approach, we compare it with a generalized autoregressive conditional heteroskedasticity (GARCH) model in terms of their performance. Results indicate that the proposed nonlinear autoregressive (NAR) model is an accurate and a quick prediction method. This finding helps businesses and policymakers to plan more appropriately.

Suggested Citation

  • Fahima Charef & Fethi Ayachi, 2016. "A Comparison between Neural Networks and GARCH Models in Exchange Rate Forecasting," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 6(1), pages 94-99, January.
  • Handle: RePEc:hur:ijaraf:v:6:y:2016:i:1:p:94-99
    as

    Download full text from publisher

    File URL: http://hrmars.com/hrmars_papers/Article_13_A_Comparison_between_Neural_Networks_(1).pdf
    Download Restriction: no

    File URL: http://hrmars.com/hrmars_papers/Article_13_A_Comparison_between_Neural_Networks_(1).pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
    2. Pyo, Sujin & Lee, Jaewook, 2018. "Exploiting the low-risk anomaly using machine learning to enhance the Black–Litterman framework: Evidence from South Korea," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 1-12.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hur:ijaraf:v:6:y:2016:i:1:p:94-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hassan Danial Aslam (email available below). General contact details of provider: http://hrmars.com/index.php/pages/detail/Accounting-Finance-Journal .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.