IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/126261.html
   My bibliography  Save this article

Complex Network Analysis of Pakistan Railways

Author

Listed:
  • Yasir Tariq Mohmand
  • Aihu Wang

Abstract

We study the structural properties of Pakistan railway network (PRN), where railway stations are considered as nodes while edges are represented by trains directly linking two stations. The network displays small world properties and is assortative in nature. Based on betweenness and closeness centralities of the nodes, the most important cities are identified with respect to connectivity as this could help in identifying the potential congestion points in the network.

Suggested Citation

  • Yasir Tariq Mohmand & Aihu Wang, 2014. "Complex Network Analysis of Pakistan Railways," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-5, March.
  • Handle: RePEc:hin:jnddns:126261
    DOI: 10.1155/2014/126261
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/126261.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/126261.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/126261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ru & Tan, Jiang-Xia & Wang, Xin & Wang, Du-Juan & Cai, Xu, 2008. "Geographic coarse graining analysis of the railway network of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5639-5646.
    2. Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
    3. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    4. Li, W. & Cai, X., 2007. "Empirical analysis of a scale-free railway network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 693-703.
    5. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    6. Long Guo & Xu Cai, 2008. "Degree And Weighted Properties Of The Directed China Railway Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(12), pages 1909-1918.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    3. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Feng, Huifang & Bai, Fengshan & Xu, Youji, 2019. "Identification of critical roads in urban transportation network based on GPS trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    2. Ghosh, Saptarshi & Banerjee, Avishek & Ganguly, Niloy, 2012. "Some insights on the recent spate of accidents in Indian Railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2917-2929.
    3. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    4. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    5. Dong-Joon Kang & Su-Han Woo, 2017. "Liner shipping networks, port characteristics and the impact on port performance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 274-295, June.
    6. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    8. Stefano Martinazzi & Andrea Flori, 2020. "The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    9. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    11. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    12. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    14. Yi Junmin, 2014. "System Planning of Route Diagram for China Railway Passengers Based on Network and Ergonomics," Journal of Systems Science and Information, De Gruyter, vol. 2(2), pages 170-177, April.
    15. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    16. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    17. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    18. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    20. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:126261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.