IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i14p2949-2955.html
   My bibliography  Save this article

Empirical analysis of dependence between stations in Chinese railway network

Author

Listed:
  • Wang, Yong-Li
  • Zhou, Tao
  • Shi, Jian-Jun
  • Wang, Jian
  • He, Da-Ren

Abstract

A railway transportation system can be represented by a bipartite network consisting of trains and stations, where a train is connected to all stations where it stops. In this paper, motivated by the resource-allocation process taking place on networks, we design a method to project a Chinese train-station bipartite network into a weighted station network. A new metric is proposed to quantify the dependence between pairs of stations, which is shown to follow a shifted power-law distribution. In addition, we compare the resource-allocation method and the well-known multiple-edge method, and the results indicate that our proposed method is more reasonable.

Suggested Citation

  • Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:14:p:2949-2955
    DOI: 10.1016/j.physa.2009.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109002453
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasir Tariq Mohmand & Aihu Wang, 2014. "Complex Network Analysis of Pakistan Railways," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-5, March.
    2. LĂĽ, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    3. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    4. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    5. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    6. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    7. Zhang, Chuanzhe & Pang, Shaopeng & Yu, Hao & Han, Guozheng, 2021. "A fund-stock network projection model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    9. Yan, Deng-Cheng & Li, Ming & Wang, Bing-Hong, 2017. "Dependence centrality similarity: Measuring the diversity of profession levels of interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 118-127.
    10. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:14:p:2949-2955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.