IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6038584.html
   My bibliography  Save this article

Finite-Time Consensus with a Time-Varying Reference State and Switching Topology

Author

Listed:
  • Jian-Yong Wang
  • Zhen Tian
  • Xu Zhu
  • Naif D. Alotaibi

Abstract

The finite-time consensus problem in the networks of multiple mobile agents is comprehensively investigated. In order to resolve this problem, a novel nonlinear information exchange protocol is proposed. The proposed protocol ensures that the states of the agents are converged to a weighted-average consensus in finite time if the communication topology is a weighted directed graph with a spanning tree and each strongly connected component is detail-balanced. Furthermore, the proposed protocol is also able to solve the finite-time consensus problem of networks with a switching topology. Finally, computer simulations are presented to demonstrate and validate the effectiveness of the theoretical analysis under the proposed protocol.

Suggested Citation

  • Jian-Yong Wang & Zhen Tian & Xu Zhu & Naif D. Alotaibi, 2017. "Finite-Time Consensus with a Time-Varying Reference State and Switching Topology," Complexity, Hindawi, vol. 2017, pages 1-9, June.
  • Handle: RePEc:hin:complx:6038584
    DOI: 10.1155/2017/6038584
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/6038584.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/6038584.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/6038584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    2. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua, 2009. "An improved model for structural vulnerability analysis of power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4259-4266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixin Gao & Hui Fang & Wenhai Chen & He Cao, 2019. "Weighted Consensus Problem for Multiagent Systems with Edge- and Node-Weighted Directed Graphs," Complexity, Hindawi, vol. 2019, pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    3. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    4. Nasiruzzaman, A.B.M. & Pota, H.R. & Akter, Most. Nahida, 2014. "Vulnerability of the large-scale future smart electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 11-24.
    5. Fei Xue & Yingyu Xu & Huaiying Zhu & Shaofeng Lu & Tao Huang & Jinling Zhang, 2017. "Structural Evaluation for Distribution Networks with Distributed Generation Based on Complex Network," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    6. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    7. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    8. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    9. Koç, Yakup & Warnier, Martijn & Mieghem, Piet Van & Kooij, Robert E. & Brazier, Frances M.T., 2014. "The impact of the topology on cascading failures in a power grid model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 169-179.
    10. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Ziqi Wang & Jinghan He & Alexandru Nechifor & Dahai Zhang & Peter Crossley, 2017. "Identification of Critical Transmission Lines in Complex Power Networks," Energies, MDPI, vol. 10(9), pages 1-19, August.
    12. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    13. Li, Pei & Yu, Jianyong & Liu, Jianxun & Zhou, Dong & Cao, Buqing, 2020. "Generating weighted social networks using multigraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    14. Mahmoud Saleh & Yusef Esa & Ahmed Mohamed, 2018. "Applications of Complex Network Analysis in Electric Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, May.
    15. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    16. Ma, Tian-Lin & Yao, Jian-Xi & Qi, Cheng & Zhu, Hong-Lu & Sun, Yu-Shu, 2013. "Non-monotonic increase of robustness with capacity tolerance in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5516-5524.
    17. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    18. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    19. Takayuki Niizato & Yukio-Pegio Gunji, 2015. "Ongoing Processes in a Fitness Network Model under Restricted Resources," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    20. Feng, Shumin & Xin, Mengwei & Lv, Tianling & Hu, Baoyu, 2019. "A novel evolving model of urban rail transit networks based on the local-world theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6038584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.