IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p987-d100911.html
   My bibliography  Save this article

Evaluating Urban Forms for Comparison Studies in the Massing Design Stage

Author

Listed:
  • Kian Wee Chen

    (CENSAM, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore)

  • Leslie Norford

    (Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

Abstract

We introduce five performance indicators to facilitate the comparison of urban massing design in the early design stages. The five simple indicators are based on existing studies and cover three main performance areas that are sensitive to urban form changes: solar, ventilation, and connectivity potentials. The first three indicators—the non-solar heated façade to floor area index, daylight façade to floor area index, and photovoltaics envelope to floor area index—measure the solar potential. The frontal area index measures the ventilation potential and the route-directness index measures the connectivity potential. The indicators are simple to use, as they only require urban geometry data for their calculation. We demonstrate the indicators in two case studies; variations in the values of these indicators show that they are sensitive to urban form changes and can be used in comparative studies to identify better performing urban forms among massing designs. We implement the indicators as an open-source Python library, Pyliburo, that designers and researchers can readily access and integrate into their existing design workflows.

Suggested Citation

  • Kian Wee Chen & Leslie Norford, 2017. "Evaluating Urban Forms for Comparison Studies in the Massing Design Stage," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:987-:d:100911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Givoni, B., 1994. "Urban design for hot humid regions," Renewable Energy, Elsevier, vol. 5(5), pages 1047-1053.
    2. Paul L. Knight & Wesley E. Marshall, 2015. "The metrics of street network connectivity: their inconsistencies," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 8(3), pages 241-259, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    2. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    3. Tsiros, Ioannis X., 2010. "Assessment and energy implications of street air temperature cooling by shade tress in Athens (Greece) under extremely hot weather conditions," Renewable Energy, Elsevier, vol. 35(8), pages 1866-1869.
    4. Ayse Ozbil & Tugce Gurleyen & Demet Yesiltepe & Ezgi Zunbuloglu, 2019. "Comparative Associations of Street Network Design, Streetscape Attributes and Land-Use Characteristics on Pedestrian Flows in Peripheral Neighbourhoods," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    5. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    6. Geoff Boeing, 2020. "Off the Grid... and Back Again? The Recent Evolution of American Street Network Planning and Design," Papers 2010.04771, arXiv.org.
    7. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    8. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    9. Benita, Francisco & Piliouras, Georgios, 2020. "Location, location, usage: How different notions of centrality can predict land usage in Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:987-:d:100911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.