IDEAS home Printed from https://ideas.repec.org/a/taf/rjouxx/v8y2015i3p241-259.html
   My bibliography  Save this article

The metrics of street network connectivity: their inconsistencies

Author

Listed:
  • Paul L. Knight
  • Wesley E. Marshall

Abstract

The concept of street connectivity has been gaining increasing appeal among researchers, planners, and planning authorities. In response, many connectivity metrics have been developed in an effort to understand better street network connectivity. This paper will study the effectiveness and consistency of three mainstream metrics - the Connectivity Index, Intersection Density, and Street Density - with respect to differences in study area and geometry. While these metrics are intended to be applied incrementally, this paper reveals that the metrics often fail to do this successfully. By controlling for many variables - including block size, block geometry, right-of-way size, network size, and network geometry - actual behaviors of these metrics deviate substantially from their intended behaviors. The metrics are non-linear functions of both study area and geometry and are ultimately inconsistent and unpredictable. In other words, each metric will yield inconsistent readings based upon the amount of area studied or the arrangement of the study boundary drawn. This has two major consequences: (1) the metrics will not produce the results desired as they are applied to incremental development; and (2) the metrics can be easily gamed by a developer privy to the information found within this paper. Neither of these outcomes is desirable in helping to better understand and potentially regulate street connectivity.

Suggested Citation

  • Paul L. Knight & Wesley E. Marshall, 2015. "The metrics of street network connectivity: their inconsistencies," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 8(3), pages 241-259, September.
  • Handle: RePEc:taf:rjouxx:v:8:y:2015:i:3:p:241-259
    DOI: 10.1080/17549175.2014.909515
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17549175.2014.909515
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17549175.2014.909515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raford, Noah & Chiaradia, Alain & Gil, Jorge, 2007. "Space Syntax: The Role of Urban Form in Cyclist Route Choice in Central London," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8qz8m4fz, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    2. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    3. Boeing, Geoff, 2020. "Off the Grid... and Back Again? The Recent Evolution of American Street Network Planning and Design," SocArXiv t9um6, Center for Open Science.
    4. Kian Wee Chen & Leslie Norford, 2017. "Evaluating Urban Forms for Comparison Studies in the Massing Design Stage," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    5. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    6. Benita, Francisco & Piliouras, Georgios, 2020. "Location, location, usage: How different notions of centrality can predict land usage in Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    8. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    9. Ayse Ozbil & Tugce Gurleyen & Demet Yesiltepe & Ezgi Zunbuloglu, 2019. "Comparative Associations of Street Network Design, Streetscape Attributes and Land-Use Characteristics on Pedestrian Flows in Peripheral Neighbourhoods," IJERPH, MDPI, vol. 16(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alattar, Mohammad Anwar & Cottrill, Caitlin & Beecroft, Mark, 2021. "Public participation geographic information system (PPGIS) as a method for active travel data acquisition," Journal of Transport Geography, Elsevier, vol. 96(C).
    2. Lamprecht Mariusz, 2022. "Space syntax as a socio-economic approach: a review of potentials in the polish context," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 5-14, January.
    3. Francisco Sergio Campos-Sánchez & Luis Miguel Valenzuela-Montes & Francisco Javier Abarca-Álvarez, 2019. "Evidence of Green Areas, Cycle Infrastructure and Attractive Destinations Working Together in Development on Urban Cycling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    4. Crispin H. V. Cooper & Ian Harvey & Scott Orford & Alain J. F. Chiaradia, 2021. "Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows," Transportation, Springer, vol. 48(2), pages 643-672, April.
    5. Cooper, Crispin H.V., 2017. "Using spatial network analysis to model pedal cycle flows, risk and mode choice," Journal of Transport Geography, Elsevier, vol. 58(C), pages 157-165.
    6. Daniel Orellana & Maria L Guerrero, 2019. "Exploring the influence of road network structure on the spatial behaviour of cyclists using crowdsourced data," Environment and Planning B, , vol. 46(7), pages 1314-1330, September.
    7. Eva Heinen & Bert van Wee & Kees Maat, 2009. "Commuting by Bicycle: An Overview of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 30(1), pages 59-96, June.
    8. Greg Rybarczyk & Changshan Wu, 2014. "Examining the Impact of Urban Morphology on Bicycle Mode Choice," Environment and Planning B, , vol. 41(2), pages 272-288, April.
    9. Ali Soltani & Andrew Allan & Masoud Javadpoor & Jaswanth Lella, 2022. "Space Syntax in Analysing Bicycle Commuting Routes in Inner Metropolitan Adelaide," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    10. Hsueh-Sheng Chang & Chin-Hsien Liao, 2015. "Planning emergency shelter locations based on evacuation behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1551-1571, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjouxx:v:8:y:2015:i:3:p:241-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjou20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.