IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p563-d95561.html
   My bibliography  Save this article

Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China

Author

Listed:
  • Weidong Man

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Hao Yu

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Lin Li

    (Department of Earth Sciences, Indiana University-Purdue University, Indianapolis 420, IN 46202, USA)

  • Mingyue Liu

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dehua Mao

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Chunying Ren

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Zongming Wang

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Mingming Jia

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Zhenghong Miao

    (Jilin Province Water Resource and Hydropower Consultative Company of P. R. China, Changchun 130021, China)

  • Chunyan Lu

    (College of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Huiying Li

    (College of Earth Science, Jilin University, Changchun 130100, China)

Abstract

Soil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km 2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km 2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 10 3 Tg = 10 15 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year −1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year −1 .

Suggested Citation

  • Weidong Man & Hao Yu & Lin Li & Mingyue Liu & Dehua Mao & Chunying Ren & Zongming Wang & Mingming Jia & Zhenghong Miao & Chunyan Lu & Huiying Li, 2017. "Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:563-:d:95561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Canaza & Elmer Calizaya & Walter Chambi & Fredy Calizaya & Carmen Mindani & Osmar Cuentas & Cirilo Caira & Walquer Huacani, 2023. "Spatial Distribution of Soil Organic Carbon in Relation to Land Use, Based on the Weighted Overlay Technique in the High Andean Ecosystem of Puno—Peru," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    2. Mary Thornbush, 2017. "Physical Geography and Environmental Sustainability," Sustainability, MDPI, vol. 9(12), pages 1-5, November.
    3. Dandan Zhao & Hong S. He & Wen J. Wang & Lei Wang & Haibo Du & Kai Liu & Shengwei Zong, 2018. "Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    4. Yongxing Ren & Xiaoyan Li & Dehua Mao & Zongming Wang & Mingming Jia & Lin Chen, 2020. "Investigating Spatial and Vertical Patterns of Wetland Soil Organic Carbon Concentrations in China’s Western Songnen Plain by Comparing Different Algorithms," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    5. Lei Wang & Jia Jia & Yalin Zhai & Jiaxuan Wang & Chunlei Sheng & Zhongwei Jing & Hailong Yan & Jiyuan Fang & Yunlong Yao, 2022. "Bibliometric Analysis of Black Soil Protection from the Perspective of Land-Use Monitoring," Land, MDPI, vol. 12(1), pages 1-16, December.
    6. Ling Luo & Dehua Mao & Zongming Wang & Baojia Du & Hengqi Yan & Bai Zhang, 2018. "Remote Sensing and GIS Support to Identify Potential Areas for Wetland Restoration from Cropland: A Case Study in the West Songnen Plain, Northeast China," Sustainability, MDPI, vol. 10(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    3. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    4. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    5. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    7. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    8. Coletti, Janaine Z. & Hinz, Christoph & Vogwill, Ryan & Hipsey, Matthew R., 2013. "Hydrological controls on carbon metabolism in wetlands," Ecological Modelling, Elsevier, vol. 249(C), pages 3-18.
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    11. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    12. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    14. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    15. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Mukherjee, Joyita & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "A system dynamic modeling of carbon cycle from mangrove litter to the adjacent Hooghly estuary, India," Ecological Modelling, Elsevier, vol. 252(C), pages 185-195.
    17. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    18. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Carlo Bravo & Rosanna Toniolo & Marco Contin & Maria De Nobili, 2021. "Electrochemical and Structural Modifications of Humic Acids in Aerobically and Anaerobically Incubated Peat," Land, MDPI, vol. 10(11), pages 1-13, November.
    20. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:563-:d:95561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.