IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i3p435-d93184.html
   My bibliography  Save this article

Sustainable Materialisation of Responsive Architecture

Author

Listed:
  • Artem Holstov

    (School of Civil Engineering and Geosciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK)

  • Graham Farmer

    (School of Architecture Planning and Landscape, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK)

  • Ben Bridgens

    (School of Civil Engineering and Geosciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK)

Abstract

Natural organisms which employ inherent material properties to enable a passive dynamic response offer inspiration for adaptive bioclimatic architecture. This approach allows a move away from the technological intensity of conventional “smart” building systems towards a more autonomous and robust materially embedded sensitivity and climatic responsiveness. The actuation mechanisms of natural responsive systems can be replicated to produce artificial moisture-sensitive (hygromorphic) composites with the response driven by hygroexpansion of wood. The work presented here builds on previous research on lab-scale material development, to investigate in detail the applicability of wood-based hygromorphic materials for large-scale external applications. The suitability of different material production techniques and viability of potential applications is established through a detailed programme of experimentation and the first one-year-long durability study of hygromorphic wood composites in full weathering conditions. These results provide the basis for the design of an optimised responsive cladding system. The opportunities and challenges presented by building integration and architectural functionalisation of responsive wood composites are discussed based on a hierarchy of application typologies including functional devices and components, performance-oriented adaptive systems, the value of aesthetic and spatial experience and place-specific contextual integration. The design of the first full-scale building application of hygromorphic wood composites is presented.

Suggested Citation

  • Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:435-:d:93184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/3/435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/3/435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Colin Dawson & Julian F. V. Vincent & Anne-Marie Rocca, 1997. "How pine cones open," Nature, Nature, vol. 390(6661), pages 668-668, December.
    2. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    3. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    4. Xi Chen & Davis Goodnight & Zhenghan Gao & Ahmet H. Cavusoglu & Nina Sabharwal & Michael DeLay & Adam Driks & Ozgur Sahin, 2015. "Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. Matthew J. Harrington & Khashayar Razghandi & Friedrich Ditsch & Lorenzo Guiducci & Markus Rueggeberg & John W.C. Dunlop & Peter Fratzl & Christoph Neinhuis & Ingo Burgert, 2011. "Origami-like unfolding of hydro-actuated ice plant seed capsules," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    6. Abro, Riazuddin S., 1994. "Recognition of passive cooling techniques," Renewable Energy, Elsevier, vol. 5(5), pages 1143-1146.
    7. Randall M. Erb & Jonathan S. Sander & Roman Grisch & André R. Studart, 2013. "Self-shaping composites with programmable bioinspired microstructures," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    8. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacopo Gaspari & Kristian Fabbri, 2022. "Exploring the Effects of Climate-Adaptive Building Shells: An Applicative Time-Saving Algorithm on a Case Study in Bologna, Italy," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Saida Teraa & Meriama Bencherif, 2022. "From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10876-10901, September.
    3. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    4. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    5. Emily Birch & Ben Bridgens & Meng Zhang & Martyn Dade-Robertson, 2021. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications," Sustainability, MDPI, vol. 13(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    2. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    3. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    5. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    6. Kristian Fabbri & Jacopo Gaspari, 2021. "A Replicable Methodology to Evaluate Passive Façade Performance with SMA during the Architectural Design Process: A Case Study Application," Energies, MDPI, vol. 14(19), pages 1-15, September.
    7. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    8. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    9. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    10. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    11. Sigrid Adriaenssens & Landolf Rhode-Barbarigos & Axel Kilian & Olivier Baverel & Victor Charpentier & Matthew Horner & Denisa Buzatu, 2014. "Dialectic Form Finding of Passive and Adaptive Shading Enclosures," Energies, MDPI, vol. 7(8), pages 1-20, August.
    12. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    13. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    14. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    15. Emily Birch & Ben Bridgens & Meng Zhang & Martyn Dade-Robertson, 2021. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    16. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    17. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    18. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    19. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    20. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:435-:d:93184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.