IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p842-d76685.html
   My bibliography  Save this article

Urban Heat Stress Vulnerability in the U.S. Southwest: The Role of Sociotechnical Systems

Author

Listed:
  • Stephanie Pincetl

    (Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA)

  • Mikhail Chester

    (Civil, Environmental, and Sustainable Engineering, Arizona State University, Tempe, AZ 85287, USA)

  • David Eisenman

    (Center for Public Health and Disasters, UCLA Fielding School of Public Health, Los Angeles, CA 90024, USA
    David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA)

Abstract

Heat vulnerability of urban populations is becoming a major issue of concern with climate change, particularly in the cities of the Southwest United States. In this article we discuss the importance of understanding coupled social and technical systems, how they constitute one another, and how they form the conditions and circumstances in which people experience heat. We discuss the particular situation of Los Angeles and Maricopa Counties, their urban form and the electric grid. We show how vulnerable populations are created by virtue of the age and construction of buildings, the morphology of roads and distribution of buildings on the landscape. Further, the regulatory infrastructure of electricity generation and distribution also contributes to creating differential vulnerability. We contribute to a better understanding of the importance of sociotechnical systems. Social infrastructure includes codes, conventions, rules and regulations; technical systems are the hard systems of pipes, wires, buildings, roads, and power plants. These interact to create lock-in that is an obstacle to addressing issues such as urban heat stress in a novel and equitable manner.

Suggested Citation

  • Stephanie Pincetl & Mikhail Chester & David Eisenman, 2016. "Urban Heat Stress Vulnerability in the U.S. Southwest: The Role of Sociotechnical Systems," Sustainability, MDPI, vol. 8(9), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:842-:d:76685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    2. Jonathan T. Overpeck, 2013. "The challenge of hot drought," Nature, Nature, vol. 503(7476), pages 350-351, November.
    3. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    4. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    5. Harriet Bulkeley & Vanesa Castán Broto & Anne Maassen, 2014. "Low-carbon Transitions and the Reconfiguration of Urban Infrastructure," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1471-1486, May.
    6. Hodson, Mike & Marvin, Simon, 2010. "Can cities shape socio-technical transitions and how would we know if they were?," Research Policy, Elsevier, vol. 39(4), pages 477-485, May.
    7. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    8. Jonathan Rutherford & Olivier Coutard, 2014. "Urban Energy Transitions: Places, Processes and Politics of Socio-technical Change," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1353-1377, May.
    9. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    10. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    2. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    3. Yi Ge & Haibo Zhang & Wen Dou & Wenfang Chen & Ning Liu & Yuan Wang & Yulin Shi & Wenxin Rao, 2017. "Mapping Social Vulnerability to Air Pollution: A Case Study of the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 9(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broto, Vanesa Castán, 2017. "Energy landscapes and urban trajectories towards sustainability," Energy Policy, Elsevier, vol. 108(C), pages 755-764.
    2. Jens Koehrsen, 2017. "Boundary Bridging Arrangements: A Boundary Work Approach to Local Energy Transitions," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    3. Laurence Rocher, 2017. "Governing metropolitan climate-energy transition: A study of Lyon’s strategic planning," Urban Studies, Urban Studies Journal Limited, vol. 54(5), pages 1092-1107, April.
    4. Griet Juwet & Michael Ryckewaert, 2018. "Energy Transition in the Nebular City: Connecting Transition Thinking, Metabolism Studies, and Urban Design," Sustainability, MDPI, vol. 10(4), pages 1-20, March.
    5. Lykouras, Ioannis & Mora, Luca, 2025. "Material matters: Recommendations for the analysis of relational spaces in sociotechnical transition studies," Technology in Society, Elsevier, vol. 80(C).
    6. Jonathan Silver & Simon Marvin, 2017. "Powering sub-Saharan Africa’s urban revolution: An energy transitions approach," Urban Studies, Urban Studies Journal Limited, vol. 54(4), pages 847-861, March.
    7. Zhen Yu & David Gibbs, 2020. "Unravelling the role of green entrepreneurs in urban sustainability transitions: A case study of China’s Solar City," Urban Studies, Urban Studies Journal Limited, vol. 57(14), pages 2901-2917, November.
    8. Mattes, Jannika & Huber, Andreas & Koehrsen, Jens, 2015. "Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective," Energy Policy, Elsevier, vol. 78(C), pages 255-264.
    9. Bradshaw, Amanda & de Martino Jannuzzi, Gilberto, 2019. "Governing energy transitions and regional economic development: Evidence from three Brazilian states," Energy Policy, Elsevier, vol. 126(C), pages 1-11.
    10. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    11. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    12. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    13. Frans Sengers, 2017. "Cycling the city, re-imagining the city: Envisioning urban sustainability transitions in Thailand," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2763-2779, September.
    14. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
    15. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    16. Christopher M. Chini & James F. Canning & Kelsey L. Schreiber & Joshua M. Peschel & Ashlynn S. Stillwell, 2017. "The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability," Sustainability, MDPI, vol. 9(1), pages 1-21, January.
    17. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Criqui, Laure & Zérah, Marie-Hélène, 2015. "Lost in transition? Comparing strategies of electricity companies in Delhi," Energy Policy, Elsevier, vol. 78(C), pages 179-188.
    19. Holley, Cameron & Lecavalier, Emma, 2017. "Energy governance, energy security and environmental sustainability: A case study from Hong Kong," Energy Policy, Elsevier, vol. 108(C), pages 379-389.
    20. Simone Strambach & Gesa Pflitsch, 2016. "Micro-dynamics in regional transition paths to sustainability - an analysis of organizational and institutional change in Augsburgs transition topology," Working Papers on Innovation and Space 2016-03, Philipps University Marburg, Department of Geography.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:842-:d:76685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.