IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i3p218-d64730.html
   My bibliography  Save this article

GIS-Based Risk Assessment of Hail Disasters Affecting Cotton and Its Spatiotemporal Evolution in China

Author

Listed:
  • Lin Wang

    (School of Geography, Beijing Normal University, Beijing 100875, China)

  • Guofang Hu

    (School of Geography, Beijing Normal University, Beijing 100875, China)

  • Yaojie Yue

    (School of Geography, Beijing Normal University, Beijing 100875, China
    State key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China)

  • Xinyue Ye

    (Department of Geography, Kent State University, Kent, OH 44242, USA)

  • Min Li

    (School of Geography, Beijing Normal University, Beijing 100875, China)

  • Jintao Zhao

    (Langfang Normal College, Langfang 065000, China)

  • Jinhong Wan

    (China Institute of Water Resources and Hydropower Research, Beijing 100048, China)

Abstract

Understanding the spatiotemporal distribution pattern of hail disaster risk for cotton is crucial in mitigating hail disaster and promoting the sustainability of cotton farming. Based on such indexes as hail disaster frequency, spatiotemporal exposure, and vulnerability of cotton, we assess hail disaster risk for cotton, and analyze its spatiotemporal pattern and evolution in Mainland China from 1950 to 2009, supported by geographic information system (GIS). The following conclusions are drawn: (1) The proposed risk assessment method reveals the spatiotemporal difference of hail disaster risk for cotton at the county level. (2) Hail disaster risk for cotton is low in China, except for north of the North China Plain and the cotton-planting areas in Xinjiang Uygur Autonomous Region. From 1950 to 2009, hail disaster risk for cotton gradually increased. (3) The descending orders of hail disaster risk levels for cotton are bud stage, seedling stage, sowing and seeding stage, boll stage, and boll opening stage. The growth period with the highest risk varies across the cotton-planting areas. (4) The results of this paper are important for developing hail disaster prevention and reduction measures.

Suggested Citation

  • Lin Wang & Guofang Hu & Yaojie Yue & Xinyue Ye & Min Li & Jintao Zhao & Jinhong Wan, 2016. "GIS-Based Risk Assessment of Hail Disasters Affecting Cotton and Its Spatiotemporal Evolution in China," Sustainability, MDPI, vol. 8(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:218-:d:64730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/3/218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/3/218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey Vitale & Marc Ouattarra & Gaspard Vognan, 2011. "Enhancing Sustainability of Cotton Production Systems in West Africa: A Summary of Empirical Evidence from Burkina Faso," Sustainability, MDPI, vol. 3(8), pages 1-34, July.
    2. Yang Zhou & Yansui Liu & Wenxiang Wu & Ning Li, 2015. "Integrated risk assessment of multi-hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 257-280, August.
    3. Xiaorui Zhang & Zhenbo Wang & Jing Lin, 2015. "GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    4. G. Berz & W. Kron & T. Loster & E. Rauch & J. Schimetschek & J. Schmieder & A. Siebert & A. Smolka & A. Wirtz, 2001. "World Map of Natural Hazards – A Global View of the Distribution and Intensity of Significant Exposures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 443-465, March.
    5. Tai-Li Lee & Ching-Ho Chen & Tzu-Yi Pai & Ray-Shyan Wu, 2015. "Development of a Meteorological Risk Map for Disaster Mitigation and Management in the Chishan Basin, Taiwan," Sustainability, MDPI, vol. 7(1), pages 1-26, January.
    6. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    7. Sarah Velten & Julia Leventon & Nicolas Jager & Jens Newig, 2015. "What Is Sustainable Agriculture? A Systematic Review," Sustainability, MDPI, vol. 7(6), pages 1-33, June.
    8. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376, December.
    9. R. Leigh & I. Kuhnel, 2001. "Hailstorm Loss Modelling and Risk Assessment in the Sydney Region, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 24(2), pages 171-185, September.
    10. Heather McMaster, 2001. "Hailstorm Risk Assessment in Rural New South Wales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 24(2), pages 187-196, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Zhang & Jingwei Zhou & Renyi Liu & Zhenhong Du & Xinyue Ye, 2016. "A New Design of High-Performance Large-Scale GIS Computing at a Finer Spatial Granularity: A Case Study of Spatial Join with Spark for Sustainability," Sustainability, MDPI, vol. 8(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Shen & Long Zhou & Yao Wu & Zhiming Cai, 2018. "A Global Expected Risk Analysis of Fatalities, Injuries, and Damages by Natural Disasters," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    2. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    3. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    4. Ran Wang & Laiyin Zhu & Han Yu & Shujuan Cui & Jing’ai Wang, 2016. "Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC)," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    5. Young Seok Song & Moo Jong Park, 2018. "A Study on Estimation Equation for Damage and Recovery Costs Considering Human Losses Focused on Natural Disasters in the Republic of Korea," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    6. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    7. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    8. Luna, Jessie K. & Dowd-Uribe, Brian, 2020. "Knowledge politics and the Bt cotton success narrative in Burkina Faso," World Development, Elsevier, vol. 136(C).
    9. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    10. Agnieszka Wojewódzka-Wiewiórska & Anna Kłoczko-Gajewska & Piotr Sulewski, 2019. "Between the Social and Economic Dimensions of Sustainability in Rural Areas—In Search of Farmers’ Quality of Life," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    11. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    12. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    13. Phélinas, Pascale & Choumert, Johanna, 2017. "Is GM Soybean Cultivation in Argentina Sustainable?," World Development, Elsevier, vol. 99(C), pages 452-462.
    14. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    15. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    16. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    17. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    18. Tsegaye Tadesse & Menghestab Haile & Gabriel Senay & Brian D. Wardlow & Cody L. Knutson, 2008. "The need for integration of drought monitoring tools for proactive food security management in sub‐Saharan Africa," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 265-279, November.
    19. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    20. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:218-:d:64730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.