Author
Listed:
- Jiayi Zhong
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Bonian Zhou
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Lei Liao
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Aimiao Qin
(College of Adsorbents Science and Engineering, Guilin University of Technology, Guilin 541004, China)
- Shengpeng Mo
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Xiaobin Zhou
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Jianwen Wei
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Hongqiang Wang
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Yinming Fan
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
- Huan Zhang
(College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China)
Abstract
Loofah is deemed a promising candidate for the purification of oily fumes. Our research utilized H 3 PO 4 for initial activation of loofah (TCS), producing loofahderived carbon (TGSC-0). Subsequently, Fenton’s reagent was utilized for further modification to yield loofah-derived carbon (TGSC-1). TGSC-1 was used in the form of an adsorption column to simultaneously treat multiple pollutants from oily fumes, with surface Fe 3+ , Fe 2+ , and H 2 O 2 catalyzing ·OH and ·OOH generation to enhance adsorption of the oils and non-methane hydrocarbon (NMHC). Characterization showed that the specific surface area of TGSC-1 was 427.97 m 2 /g and pore sizes ranged from 0.50 to 3.50 nm. The rich mesoporous and macroporous structures of TGSC-1 enhanced the capability of carbon layer adsorption. Langmuir adsorption kinetics suggested that adsorption proceeded via monolayer adsorption pathways, while L-τ lines revealed shorter protective effect times for adsorbing PM 10 and PM 2.5 than for oils and NMHC. The results indicated that TGSC-1 exhibited maximum saturated adsorption capacities of 25.79, 13.02, 9.82, and 15.99 mg/g for oils, NMHC, PM 2.5 , and PM 10 , respectively. Increasing resistance of the adsorption column exhibited a notable synergistic effect of filtration and adsorption in treating oily fumes. It combines renewable materials with low-energy processing, delivering eco-economic benefits for sustainable development and application.
Suggested Citation
Jiayi Zhong & Bonian Zhou & Lei Liao & Aimiao Qin & Shengpeng Mo & Xiaobin Zhou & Jianwen Wei & Hongqiang Wang & Yinming Fan & Huan Zhang, 2025.
"Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption,"
Sustainability, MDPI, vol. 17(9), pages 1-22, April.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:9:p:4079-:d:1647327
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4079-:d:1647327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.