IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3898-d1642864.html
   My bibliography  Save this article

Enhancing Biogas Production: Pre-Treatment of Lignocellulosic Biomass Using Biogas Plant Digestate

Author

Listed:
  • Barbora Jankovičová

    (Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia)

  • Miroslav Hutňan

    (Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia)

  • Mikhael Sammarah

    (Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia)

Abstract

Pre-treatment of lignocellulosic biomass is a necessary step to improve the degradability of these materials when used as substrates for biogas production, due to their resistance resulting from their complex composition and structural properties. The effect of using digestate for the pre-treatment of maize waste to enhance biogas production in an anaerobic digestion process was assessed through biogas potential tests and long-term operation of an anaerobic reactor model. The biogas potential tests confirmed the positive effect of soaking maize waste in digestate for pre-treatment compared to soaking it in water, as higher specific biogas production rates of 17%, 18%, and 29% were achieved after soaking it in digestate for 1 day, 2 days, and 5 days, respectively. The results from monitoring the long-term operation of the anaerobic reactor demonstrated the suitability of using digestate-soaked maize waste as a co-substrate to maize silage, which may significantly reduce the dependence on maize silage in practical applications. Stable operation of the reactor was also achieved during anaerobic treatment of the pre-treated maize waste itself, with an average specific biogas production of 403 mL/g VS.

Suggested Citation

  • Barbora Jankovičová & Miroslav Hutňan & Mikhael Sammarah, 2025. "Enhancing Biogas Production: Pre-Treatment of Lignocellulosic Biomass Using Biogas Plant Digestate," Sustainability, MDPI, vol. 17(9), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3898-:d:1642864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    2. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Grażyna Kędzia & Barbara Ocicka & Aneta Pluta-Zaremba & Marta Raźniewska & Jolanta Turek & Beata Wieteska-Rosiak, 2022. "Social Innovations for Improving Compostable Packaging Waste Management in CE: A Multi-Solution Perspective," Energies, MDPI, vol. 15(23), pages 1-19, December.
    3. Małgorzata Stec & Mariola Grzebyk, 2022. "Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union," Energies, MDPI, vol. 15(21), pages 1-18, November.
    4. Morten Kam Dahl Dueholm & Kasper Skytte Andersen & Anne-Kirstine C. Korntved & Vibeke Rudkjøbing & Madalena Alves & Yadira Bajón-Fernández & Damien Batstone & Caitlyn Butler & Mercedes Cecilia Cruz & , 2024. "MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ige, Ayodeji Raphael & Łaska, Grażyna, 2025. "Production of antioxidant additives and biochar pellets from the Co-pyrolysis of agricultural biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    6. Weremczuk, Arkadiusz, 2023. "The Energy Potential of Agricultural Biomass in the European Union," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 23(4), December.
    7. Grzegorz Łysiak & Ryszard Kulig & Jawad Kadhim Al Aridhee, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 1—Study on the Effect of Moisture Content on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    8. Dermawan, Denny & Tsai, Da-Wei & Yudoyono, Gangsar Satrio & You, Sheng-Jie & Hsieh, Yen-Kung, 2024. "Taguchi method optimization of syngas production via pineapple waste pyrolysis using atmospheric pressure microwave plasma," Renewable Energy, Elsevier, vol. 231(C).
    9. Alejandro Moure Abelenda & Abdikhani Ali & Kirk T. Semple & Farid Aiouache, 2023. "Aspen Plus ® Process Simulation Model of the Biomass Ash-Based Treatment of Anaerobic Digestate for Production of Fertilizer and Upgradation of Biogas," Energies, MDPI, vol. 16(7), pages 1-22, March.
    10. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    11. Roberto C. Beber & Camila d. S. Turini & Vinicius C. Beber & Roberta M. Nogueira & Evaldo M. Pires, 2025. "Effect of Plant Part and Age on the Proximate, Chemical, and Elemental Characteristics of Elephant Grass Cultivar BRS Capiaçu for Combustion-Based Sustainable Bioenergy," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    12. Agnieszka A. Pilarska & Krzysztof Pilarski, 2023. "Bioenergy Generation from Different Types of Waste by Anaerobic Digestion," Energies, MDPI, vol. 16(19), pages 1-4, October.
    13. Dorota Janiszewska & Luiza Ossowska, 2023. "Spatial Differentiation of Agricultural Biomass Potential in Polish Voivodeships," Energies, MDPI, vol. 16(19), pages 1-16, September.
    14. Rebeka Pajura & Adam Masłoń & Joanna Czarnota, 2023. "The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland," Energies, MDPI, vol. 16(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3898-:d:1642864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.