IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3339-d1630917.html
   My bibliography  Save this article

Laboratory Testing of Resilience Effects of Water Microgrids for Sustainable Water Supply

Author

Listed:
  • Binod Ale Magar

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901, USA)

  • Arif Hasnat

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901, USA)

  • Amirmahdi Ghanaatikashani

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901, USA)

  • Kriti Acharya

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901, USA)

  • Sangmin Shin

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901, USA)

Abstract

Traditional centralized water systems are facing sustainability challenges due to climate and socioeconomic changes, extreme weather events, and aging infrastructure and their uncertainties. The energy sector has addressed similar challenges using the microgrid approach, which involves decentralized energy sources and their supply, improving system resilience and sustainable energy supply. This study investigated the resilience effects of water microgrids, which feature operational interactions between centralized and local systems for sustainable water supply. A lab-scale water distribution model was tested to demonstrate centralized, decentralized, and microgrid water systems under the disruption scenarios of pump shutdown, pump rate manipulation, and pipe leaks/bursts. The water microgrids integrate centralized and local systems’ operations, while the decentralized system operates independently. Then, functionality-based resilience and its attributes were evaluated for each disruption scenario. The results reveal that, overall, the microgrid configuration, with increased water supply redundancy and flexible operational adjustment based on system conditions, showed higher resilience, robustness, and recovery rate and a lower loss rate across disruption scenarios. The resilience effect of water microgrids was more evident with longer and more severe disruptions. Considering global challenges in water security under climate and socioeconomic changes, the findings suggest insights into a hybrid water system as a strategy to enhance resilience and water use efficiency and provide adaptive operations for sustainable water supply.

Suggested Citation

  • Binod Ale Magar & Arif Hasnat & Amirmahdi Ghanaatikashani & Kriti Acharya & Sangmin Shin, 2025. "Laboratory Testing of Resilience Effects of Water Microgrids for Sustainable Water Supply," Sustainability, MDPI, vol. 17(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3339-:d:1630917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nancey Green Leigh & Heonyeong Lee, 2019. "Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    2. Elizabeth Lawson & Raziyeh Farmani & Ewan Woodley & David Butler, 2020. "A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damman, Sigrid & Schmuck, Alexandra & Oliveira, Rosário & Koop, Steven (Stef) H.A. & Almeida, Maria do Céu & Alegre, Helena & Ugarelli, Rita Maria, 2023. "Towards a water-smart society: Progress in linking theory and practice," Utilities Policy, Elsevier, vol. 85(C).
    2. Othman, Mohd Edzham Fareez & Sidek, Lariyah Mohd & Basri, Hidayah & El-Shafie, Ahmed & Ahmed, Ali Najah, 2025. "Climate challenges for sustainable hydropower development and operational resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    3. Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
    4. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    5. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    6. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    7. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    8. Giffoni, Eduarda & Jude, Simon & Smith, Heather M. & Pollard, Simon J.T., 2022. "Real-life resilience: Exploring the organisational environment of international water utilities," Utilities Policy, Elsevier, vol. 79(C).
    9. Fatemeh Asghari & Farzad Piadeh & Daniel Egyir & Hossein Yousefi & Joseph P. Rizzuto & Luiza C. Campos & Kourosh Behzadian, 2023. "Resilience Assessment in Urban Water Infrastructure: A Critical Review of Approaches, Strategies and Applications," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    10. Mohamed G. Moh Almihat & Josiah L. Munda, 2025. "The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning," Energies, MDPI, vol. 18(7), pages 1-30, March.
    11. Andreas N. Angelakis & Andrea G. Capodaglio & Rohitashw Kumar & Mohammad Valipour & Abdelkader T. Ahmed & Alper Baba & Esra B. Güngör & Laila Mandi & Vasileios A. Tzanakakis & Nektarios N. Kourgialas , 2025. "Water Supply Systems: Past, Present Challenges, and Future Sustainability Prospects," Land, MDPI, vol. 14(3), pages 1-49, March.
    12. Khaled Taouil & Rahma Aloulou & Salma Bradai & Amal Gassara & Mohamed Wajdi Kharrat & Badii Louati & Michel Giordani, 2024. "P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities," Energies, MDPI, vol. 17(15), pages 1-29, July.
    13. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    14. Sulaiman A. Almohaimeed, 2023. "Techno-Environmental Analysis of a Microgrid Energy System in a University Office Complex," Sustainability, MDPI, vol. 15(16), pages 1-27, August.
    15. Elizabeth Lawson & Raziyeh Farmani & Ewan Woodley & David Butler, 2020. "A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    16. Edita Olaizola & Rafael Morales-Sánchez & Marcos Eguiguren Huerta, 2020. "Biomimetic Organisations: A Management Model that Learns from Nature," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    17. Rambonilaza, Tina & Rulleau, Bénédicte & Assouan, Epiphane, 2023. "On sharing the costs of public drinking water infrastructure renewal among users with different preferences," Utilities Policy, Elsevier, vol. 85(C).
    18. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    19. Abrahms, Max & Dau, Luis Alfonso & Moore, Elizabeth M., 2023. "Should I stay or should I go now? Understanding terrorism as a driver of institutional escapism," International Business Review, Elsevier, vol. 32(4).
    20. Khambai Khamjalas, 2024. "Nexuses between Food, Energy, and Water Consumption on Urban-Rural Income Gap in South-Eastern Asian Countries Using Difference in Difference in Modelling Technique," International Journal of Economics and Financial Issues, Econjournals, vol. 14(2), pages 186-195, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3339-:d:1630917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.