IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2338-d1607233.html
   My bibliography  Save this article

Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China

Author

Listed:
  • Shanfeng Zhang

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China)

  • Yilin Xu

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China)

  • Hao Wu

    (Hangzhou Urban Planning and Design Institute, Hangzhou 310012, China)

  • Wenting Wu

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China)

  • Yuhao Lou

    (Hangzhou Zhituo Space Planning and Design Co., Ltd., Hangzhou 310014, China)

Abstract

With the intensification of climate change and urbanization, the impact of high-temperature disasters on urban resilience has become increasingly significant. Based on the “Pressure-State-Response” (PSR) model, this study proposes a novel assessment method for urban high-temperature disaster resilience. Through 15 evaluation indicators across 3 categories, we quantified the high-temperature disaster resilience level in Hangzhou and constructed a SOM-K-means second-order clustering algorithm to classify the study area into different resilience zones, exploring the spatial differentiation characteristics of high-temperature disaster resilience. The research results indicate the following: (1) Hangzhou exhibits a relatively low level of high-temperature disaster resilience, with a spatial distribution pattern showing a radial decrease from the main city area at the center, followed by a slight increase in the far periphery of the main city area. (2) The study area was divided into four distinct high-temperature disaster resilience zones, demonstrating significant spatial differentiation characteristics. This study innovatively integrates the PSR model with the SOM-K-means clustering method, providing a new perspective for the quantitative assessment and spatial zoning of urban high-temperature disaster resilience. The findings offer valuable decision-making support for enhancing urban resilience.

Suggested Citation

  • Shanfeng Zhang & Yilin Xu & Hao Wu & Wenting Wu & Yuhao Lou, 2025. "Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China," Sustainability, MDPI, vol. 17(6), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2338-:d:1607233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    2. Stevan Savić & Vladimir Marković & Ivan Šećerov & Dragoslav Pavić & Daniela Arsenović & Dragan Milošević & Dragan Dolinaj & Imre Nagy & Milana Pantelić, 2018. "Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 891-911, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    2. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    3. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    4. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    5. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    6. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    7. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    8. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    9. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    10. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    11. Qunshan Zhao & Elizabeth A. Wentz, 2016. "A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research," Data, MDPI, vol. 1(1), pages 1-9, June.
    12. Wenwen Cheng & J. O. Spengler & Robert D. Brown, 2020. "A Comprehensive Model for Estimating Heat Vulnerability of Young Athletes," IJERPH, MDPI, vol. 17(17), pages 1-11, August.
    13. Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    14. Yuan-Bin Cai & Ke Li & Yan-Hong Chen & Lei Wu & Wen-Bin Pan, 2021. "The Changes of Heat Contribution Index in Urban Thermal Environment: A Case Study in Fuzhou," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    15. Leeann Kuehn & Sabrina McCormick, 2017. "Heat Exposure and Maternal Health in the Face of Climate Change," IJERPH, MDPI, vol. 14(8), pages 1-13, July.
    16. Wei Wu & Qingsheng Liu & He Li & Chong Huang, 2023. "Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    17. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    18. Mabon, Leslie & Shih, Wan-Yu, 2018. "What might ‘just green enough’ urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan," World Development, Elsevier, vol. 107(C), pages 224-238.
    19. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    20. Rehana Shrestha & Johannes Flacke & Javier Martinez & Martin Van Maarseveen, 2016. "Environmental Health Related Socio-Spatial Inequalities: Identifying “Hotspots” of Environmental Burdens and Social Vulnerability," IJERPH, MDPI, vol. 13(7), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2338-:d:1607233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.