IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p760-d1570547.html
   My bibliography  Save this article

The Carbon Footprint of Pharmaceutical Logistics: Calculating Distribution Emissions

Author

Listed:
  • Brett Ashworth

    (Department of Logistics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa)

  • Martin Johannes du Plessis

    (Department of Industrial Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa)

  • Leila Louise Goedhals-Gerber

    (Department of Industrial Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa)

  • Joubert Van Eeden

    (Department of Industrial Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa)

Abstract

Calculating greenhouse gas (GHG) emissions across the supply chain presents a significant challenge for the pharmaceutical industry in achieving environmental sustainability. This article develops a comprehensive methodology for the data collection and calculation of GHG emissions in pharmaceutical distribution, with a focus on road transport and warehousing. The methodology specifies key data requirements and sources, enhancing transparency and alignment with industry standards, such as the GLEC Framework. Real-world pharmaceutical data were collected from a global logistics company operating in Southern Africa. The methodology was applied, which yielded significantly variable results. The calculated emission intensity factors differ significantly from those in the literature. Emissions from road transport ranged from 239.57 to 6156.80 gCO 2 e/t-km, depending on the vehicle size, load factor, and empty running. Warehousing emissions results show a smaller variance, ranging from 6.07 to 8.85 kgCO 2 e/m 3 or 81.70 to 104.42 kgCO 2 e/t. The insights from this article support the logistics company and other stakeholders in understanding their emissions and data requirements for enhanced assessments to advance sustainable practices in pharmaceutical logistics.

Suggested Citation

  • Brett Ashworth & Martin Johannes du Plessis & Leila Louise Goedhals-Gerber & Joubert Van Eeden, 2025. "The Carbon Footprint of Pharmaceutical Logistics: Calculating Distribution Emissions," Sustainability, MDPI, vol. 17(2), pages 1-27, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:760-:d:1570547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabzadeh, Hamed & Rabiee, Meysam & Sarkis, Joseph, 2024. "Sourcing from risky reverse channels: Insights on pricing and resilience strategies in sustainable supply chains," International Journal of Production Economics, Elsevier, vol. 276(C).
    2. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    3. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    4. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    5. Chen, Xu & Li, Shanshan & Wang, Xiaojun, 2020. "Evaluating the effects of quality regulations on the pharmaceutical supply chain," International Journal of Production Economics, Elsevier, vol. 230(C).
    6. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    7. Sinha, Priyank & Kumar, Sameer & Chandra, Charu, 2023. "Strategies for ensuring required service level for COVID-19 herd immunity in Indian vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 304(1), pages 339-352.
    8. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    10. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    11. Kochakkashani, Farid & Kayvanfar, Vahid & Haji, Alireza, 2023. "Supply chain planning of vaccine and pharmaceutical clusters under uncertainty: The case of COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Chávez, Marcela María Morales & Sarache, William & Costa, Yasel, 2018. "Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 136-162.
    13. Hanieh Shekarabi & Mohammad Mahdi Vali-Siar & Ashkan Mozdgir, 2024. "Food supply chain network design under uncertainty and pandemic disruption," Operational Research, Springer, vol. 24(2), pages 1-37, June.
    14. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    15. Kiyotoshi Kou & Yi Dou & Ichiro Arai, 2024. "Analysis of the Forces Driving Public Hospitals’ Operating Costs Using LMDI Decomposition: The Case of Japan," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    16. Shiva Zandkarimkhani & Hassan Mina & Mehdi Biuki & Kannan Govindan, 2020. "A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design," Annals of Operations Research, Springer, vol. 295(1), pages 425-452, December.
    17. Asrat Mekonnen Gobachew & Hans-Dietrich Haasis, 2023. "Scenario-Based Optimization of Supply Chain Performance under Demand Uncertainty," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    18. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    19. Zeinab Sazvar & Mahsa Zokaee & Reza Tavakkoli-Moghaddam & Samira Al-sadat Salari & Sina Nayeri, 2022. "Designing a sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncertainty, manufacturer’s brand and waste management," Annals of Operations Research, Springer, vol. 315(2), pages 2057-2088, August.
    20. Ieva Meidute-Kavaliauskiene & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "The Design of a Multi-Period and Multi-Echelon Perishable Goods Supply Network under Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:760-:d:1570547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.