IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8664-d1758905.html
   My bibliography  Save this article

Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating

Author

Listed:
  • Gerhard Fritscher

    (Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria)

  • Christoph Steindl

    (Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria)

  • Jasmin Helnwein

    (Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria)

  • Julian Heger

    (ÖBB-Infrastruktur AG, Lassallestraße 5, 1020 Vienna, Austria)

Abstract

Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station, offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV), optional wind energy, and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions, technical simplicity, and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates, storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage, with a PV-only configuration emerging as the most suitable option under current site conditions. Thus, it offers a replicable framework for decarbonising critical stationary railway infrastructure.

Suggested Citation

  • Gerhard Fritscher & Christoph Steindl & Jasmin Helnwein & Julian Heger, 2025. "Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating," Sustainability, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8664-:d:1758905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    3. Fabio Serra & Marialaura Lucariello & Mario Petrollese & Giorgio Cau, 2020. "Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment," Energies, MDPI, vol. 13(16), pages 1-18, August.
    4. Klaus Haslinger & Korbinian Breinl & Lovrenc Pavlin & Georg Pistotnik & Miriam Bertola & Marc Olefs & Marion Greilinger & Wolfgang Schöner & Günter Blöschl, 2025. "Increasing hourly heavy rainfall in Austria reflected in flood changes," Nature, Nature, vol. 639(8055), pages 667-672, March.
    5. Motalleb Miri & Ivan Tolj & Frano Barbir, 2024. "Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources," Energies, MDPI, vol. 17(15), pages 1-26, August.
    6. Zhan Xu & Ning Zhao & Stuart Hillmansen & Clive Roberts & Yan Yan, 2022. "Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review," Energies, MDPI, vol. 15(17), pages 1-22, September.
    7. Sergey V. Mitrofanov & Natalya G. Kiryanova & Anna M. Gorlova, 2021. "Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Furat Dawood & GM Shafiullah & Martin Anda, 2020. "Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    9. Li, Na & Lukszo, Zofia & Schmitz, John, 2023. "An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    10. Markus Schladitz & Robert Adam & Stephan Schlegel, 2023. "Investigations on the Heat Transfer between an Electrical Heating Rod and a Rail for Heated Railway Switch Points," Energies, MDPI, vol. 16(4), pages 1-17, February.
    11. Giovanniello, Michael Anthony & Wu, Xiao-Yu, 2023. "Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid," Applied Energy, Elsevier, vol. 345(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Wells & Roberto Minunno & Heap-Yih Chong & Gregory M. Morrison, 2022. "Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    4. Yan, Yan & Zhang, Jiaqiao & Li, Guangzhao & Zhou, Weihao & Ni, Zhonghua, 2024. "Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    6. Abhnil Prasad & Merlinde Kay, 2025. "Mapping Solar–Wind Complementarity with BARRA," Energies, MDPI, vol. 18(20), pages 1-21, October.
    7. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    8. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    9. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    10. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    11. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    12. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    13. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    14. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    15. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    17. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    18. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    19. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    20. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8664-:d:1758905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.