IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8608-d1757937.html
   My bibliography  Save this article

A Study on the Dynamic Evolution and Influencing Factors of Total Factor Productivity in China’s Civil Aviation Industry Considering Carbon Emissions

Author

Listed:
  • Mengyu Guo

    (College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Li Zhang

    (College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract

This study evaluates China’s civil aviation total factor productivity (TFP) in 2000–2021, treating carbon emissions as undesirable output via the Global Malmquist–Luenberger (GML) index, with a modified carbon emission estimation coefficient to boost calculation accuracy. Static and dynamic time series regression models analyze short/long-term effects of influencing factors. Results show civil aviation TFP grows ~0.3% annually, stable with cyclical fluctuations, and exhibits dynamic adjustment and mean reversion. Market demand/competition significantly positively affect TFP in both models; technological innovation and capital investment have substantial lagged effects (not significant in the static model). The contributions include three aspects. First, methodological innovation through a revised carbon emission coefficient. Second, theoretical expansion by combining static and dynamic models. Third, macro policy guidance for balancing economic-environmental performance under China’s dual carbon strategy.

Suggested Citation

  • Mengyu Guo & Li Zhang, 2025. "A Study on the Dynamic Evolution and Influencing Factors of Total Factor Productivity in China’s Civil Aviation Industry Considering Carbon Emissions," Sustainability, MDPI, vol. 17(19), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8608-:d:1757937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    2. Byung M. Jeon & Robin C. Sickles, 2004. "The role of environmental factors in growth accounting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 567-591.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisann Krautzberger & Heike Wetzel, 2012. "Transport and CO 2 : Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 435-454, November.
    2. Hampf, Benjamin & Krüger, Jens J., 2013. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79699, Verein für Socialpolitik / German Economic Association.
    3. Charles-Henri DiMaria, 2014. "Sustainability matters," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(3), pages 1257-1269, May.
    4. Joshi, Shruti & Nath, Siddhartha & Ranjan, Abhishek, 2023. "Green Total Factor Productivity for India: Some Recent Estimates and Policy Directions," MPRA Paper 117717, University Library of Munich, Germany.
    5. Eyad Aldalou & Selçuk Perçin, 2025. "An innovative approach to evaluating sustainable development performance: The case of Turkey," Natural Resources Forum, Blackwell Publishing, vol. 49(1), pages 358-383, February.
    6. Minzhe Du & Bing Wang & Yanrui Wu, 2014. "Sources of China’s Economic Growth: An Empirical Analysis Based on the BML Index with Green Growth Accounting," Sustainability, MDPI, vol. 6(9), pages 1-22, September.
    7. Jin, Gang & Shen, Kunrong & Li, Jian, 2020. "Interjurisdiction political competition and green total factor productivity in China: An inverted-U relationship," China Economic Review, Elsevier, vol. 61(C).
    8. Hampf, Benjamin & Krüger, Jens, 2013. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 60952, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Rolf F�re & Shawna Grosskopf & Tommy Lundgren & Per-Olov Marklund & Wenchao Zhou, 2014. "Pollution-generating technologies and environmental efficiency," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 233-251, August.
    10. Boon L Lee & Clevo Wilson & Carl A Pasurka, Jr, 2013. "The Good, the Bad and the Efficient: Productivity, efficiency and technical change in the Airline Industry, 2004:2008," School of Economics and Finance Discussion Papers and Working Papers Series 299, School of Economics and Finance, Queensland University of Technology.
    11. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    12. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    13. Shiyi Chen, 2009. "Engine or drag: Can high energy consumption and CO 2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 548-571, December.
    14. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Deshan Li & Rongwei Wu, 2018. "A Dynamic Analysis of Green Productivity Growth for Cities in Xinjiang," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    16. Subhash C. Ray & Kankana Mukherjee, 2007. "Efficiency in Managing the Environment and the Opportunity Cost of Pollution Abatement," Working papers 2007-09, University of Connecticut, Department of Economics.
    17. Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy & Marklund, Per-Olov & Zhou, Wenchao, 2012. "Productivity: Should We Include Bads?," CERE Working Papers 2012:13, CERE - the Center for Environmental and Resource Economics.
    18. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    19. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    20. Chen, Shiyi, 2015. "Environmental pollution emissions, regional productivity growth and ecological economic development in China," China Economic Review, Elsevier, vol. 35(C), pages 171-182.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8608-:d:1757937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.