IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7959-d1741708.html
   My bibliography  Save this article

A Multi-Model Coupling Approach to Biodiversity Conservation Strategies for Nationally Important Agricultural Heritage Systems in the Beijing–Tianjin–Hebei Region

Author

Listed:
  • Jiachen Wei

    (School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China)

  • Yuanyuan Ji

    (School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China)

  • Dongdong Yang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Fahui Liang

    (School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China)

Abstract

To address biodiversity degradation in Nationally Important Agricultural Heritage Systems, this study integrates multi-temporal remote sensing data (2000–2023) with the Biodiversity Maintenance Function (BMF) and InVEST Habitat Quality (HQ) models. We assess ecological changes in the Beijing–Tianjin–Hebei (BTH) region and 14 nationally recognized heritage systems. A dual-factor HQ–BMF coupling matrix was developed to trace ecological trajectories shaped by both natural and anthropogenic influences. Results show that (1) regional BMF followed a non-linear trend of increase, decline, and rebound between 2003 and 2023. The mean value rose from 0.1036 in 2003 to 0.1397 in 2023, despite intermediate fluctuations. In contrast, HQ declined steadily from 0.8734 in 2003 to 0.7729 in 2023, reflecting a continuous loss of high-quality habitats. (2) Nearly all heritage systems experienced phased BMF fluctuations—an initial rise, subsequent decline, and eventual recovery. At the same time, HQ showed a continuous decline in 8 of the 14 systems, indicating that more than half of the systems experienced sustained habitat degradation. (3) The HQ–BMF matrix revealed strong spatial heterogeneity. By 2023, only one site remained in a “dual-high” zone, while another had fallen into a “dual-low” condition, suggesting localized ecological degradation. These findings provide quantitative support for conservation strategies, ecological compensation, and land-use regulation in agricultural heritage systems.

Suggested Citation

  • Jiachen Wei & Yuanyuan Ji & Dongdong Yang & Fahui Liang, 2025. "A Multi-Model Coupling Approach to Biodiversity Conservation Strategies for Nationally Important Agricultural Heritage Systems in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 17(17), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7959-:d:1741708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongxun Zhang & Xiande Li, 2022. "Protecting Traditional Agricultural Landscapes by Promoting Industrial Integration Development: Practices from Important Agricultural Heritage Systems (IAHS) Sites in China," Land, MDPI, vol. 11(8), pages 1-18, August.
    2. Costanza, Robert & Fisher, Brendan & Mulder, Kenneth & Liu, Shuang & Christopher, Treg, 2007. "Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production," Ecological Economics, Elsevier, vol. 61(2-3), pages 478-491, March.
    3. Li Zhao & Mengwei Su & Xueyan Wang & Xiaoqing Li & Xinhan Chang & Pengtao Zhang, 2023. "Spatial–Temporal Evolution and Prediction of Habitat Quality in Beijing–Tianjin–Hebei Region Based on Land Use Change," Land, MDPI, vol. 12(3), pages 1-16, March.
    4. Yuzhou Zhang & Jianxin Yang & Weilong Wu & Diwei Tang, 2025. "Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China," Sustainability, MDPI, vol. 17(10), pages 1-22, May.
    5. Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
    6. Fei Zhao & Changqiao Zhu & Jia’en Zhang & Shiming Luo & Yueyi Feng & Huimin Xiang & Yichen Jiang & Xiali Lu & Yi Tian, 2023. "Is Land Expropriation to Keep Agricultural Use an Effective Strategy for the Conservation of an Urban Agricultural Heritage System? Evidence from China," Land, MDPI, vol. 12(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Zhou & Lu Huang & Ke Wang & Wenhao Hu, 2023. "From Productive Landscape to Agritouristic Landscape? The Evidence of an Agricultural Heritage System—Zhejiang Huzhou Mulberry-Dyke and Fish-Pond System," Land, MDPI, vol. 12(5), pages 1-21, May.
    2. Alena J. Raymond & James R. Tipton & Alissa Kendall & Jason T. DeJong, 2020. "Review of impact categories and environmental indicators for life cycle assessment of geotechnical systems," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 485-499, June.
    3. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    4. Paulo A.L.D. Nunes & Elena Ojea & Maria Loureiro, 2009. "Mapping of Forest Biodiversity Values: A Plural Perspective," Working Papers 2009.4, Fondazione Eni Enrico Mattei.
    5. Ramel, Cindy & Rey, Pierre-Louis & Fernandes, Rui & Vincent, Claire & Cardoso, Ana R. & Broennimann, Olivier & Pellissier, Loïc & Pradervand, Jean-Nicolas & Ursenbacher, Sylvain & Schmidt, Benedikt R., 2020. "Integrating ecosystem services within spatial biodiversity conservation prioritization in the Alps," Ecosystem Services, Elsevier, vol. 45(C).
    6. Houdet, Joël & Trommetter, Michel & Weber, Jacques, 2012. "Understanding changes in business strategies regarding biodiversity and ecosystem services," Ecological Economics, Elsevier, vol. 73(C), pages 37-46.
    7. Kaur, Harpaljit & Habibullah, Muzafar & Nagaratnam, Shalini, 2019. "Impact of Natural Disasters on Biodiversity: Evidence Using Quantile Regression Approach," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(2), pages 67-81.
    8. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    9. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    10. Kai Li & Ying Hou & Ruhong Xin & Yuejing Rong & Xiang Pan & Zihan Gao & Ting Wang & Bingyang Lyu & Baimeng Guo & Haocheng Wang & Xi Li, 2024. "Integrating Ecosystem Services and Health into Landscape Functional Zoning: A Case Study of the Jinan Southern Mountainous Area, China," Land, MDPI, vol. 13(10), pages 1-22, September.
    11. Meizhe Liao & Zongwen Zhang & Ruirui Yan & Keyu Bai, 2024. "The Assessment of Biodiversity Changes and Sustainable Agricultural Development in The Beijing-Tianjin-Hebei Region of China," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    12. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    13. Zhongwei Guo & Lin Zhang & Yiming Li, 2010. "Increased Dependence of Humans on Ecosystem Services and Biodiversity," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-8, October.
    14. Enrique Acebo & José‐Ángel Miguel‐Dávila & Mariano Nieto, 2021. "External stakeholder engagement: Complementary and substitutive effects on firms' eco‐innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2671-2687, July.
    15. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    16. CHEN, Running & PENG, Yisong & REN, Qiang & WU, Jiayu, 2025. "Optimizing global protected areas to address future land use threats to biodiversity," Land Use Policy, Elsevier, vol. 154(C).
    17. Yang, Wu & Chang, Jie & Xu, Bin & Peng, Changhui & Ge, Ying, 2008. "Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China," Ecological Economics, Elsevier, vol. 68(1-2), pages 116-125, December.
    18. Laura Giuffrida & Marika Cerro & Giuseppe Cucuzza & Giovanni Signorello & Maria De Salvo, 2025. "Spatiotemporal Assessment of Habitat Quality in Sicily, Italy," Land, MDPI, vol. 14(2), pages 1-28, January.
    19. Xinmin Zhang & Ronald C Estoque & Hualin Xie & Yuji Murayama & Manjula Ranagalage, 2019. "Bibliometric analysis of highly cited articles on ecosystem services," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    20. Lu Zhang & Jiaqi Han & Jiayi Xu & Wenjie Yang & Bin Peng & Mingcan Wei, 2025. "Assessment and Prediction of Land Use and Landscape Ecological Risks in the Henan Section of the Yellow River Basin," Sustainability, MDPI, vol. 17(17), pages 1-21, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7959-:d:1741708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.