IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6777-d1709933.html
   My bibliography  Save this article

Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models

Author

Listed:
  • I Gede Nyoman Mindra Jaya

    (Department of Statistics, Universitas Padjadjaran, Sumedang 45363, Indonesia)

  • Yudhie Andriyana

    (Department of Statistics, Universitas Padjadjaran, Sumedang 45363, Indonesia)

  • Bertho Tantular

    (Department of Statistics, Universitas Padjadjaran, Sumedang 45363, Indonesia)

  • Sinta Septi Pangastuti

    (Department of Statistics, Universitas Padjadjaran, Sumedang 45363, Indonesia)

  • Farah Kristiani

    (Department of Mathematics, Parahyangan Catholic University, Kota Bandung 40141, Indonesia)

Abstract

Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM (CNN–LSTM), and a Bayesian spatiotemporal model—using monthly dengue incidence data from 2009 to 2023 in Bandung City, Indonesia. Model performance was assessed using MAE, sMAPE, RMSE, and Pearson’s correlation (R). Among all models, the Bayesian spatiotemporal model achieved the best performance, with the lowest MAE (5.543), sMAPE (62.137), and RMSE (7.482), and the highest R (0.723). While SARIMA and XGBoost showed signs of overfitting, the Bayesian model not only delivered more accurate forecasts but also produced spatial risk estimates and identified high-risk hotspots via exceedance probabilities. These features make it particularly valuable for developing early warning systems and guiding targeted public health interventions, supporting the broader goals of sustainable disease management.

Suggested Citation

  • I Gede Nyoman Mindra Jaya & Yudhie Andriyana & Bertho Tantular & Sinta Septi Pangastuti & Farah Kristiani, 2025. "Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models," Sustainability, MDPI, vol. 17(15), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6777-:d:1709933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jue Tao Lim & Borame Sue Dickens & Sun Haoyang & Ng Lee Ching & Alex R Cook, 2020. "Inference on dengue epidemics with Bayesian regime switching models," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-15, May.
    2. I Gede Nyoman Mindra Jaya & Henk Folmer, 2025. "Spatiotemporal forecasting models with and without a confounded covariate," Journal of Geographical Systems, Springer, vol. 27(1), pages 113-146, January.
    3. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.
    4. Mokhalad A. Majeed & Helmi Zulhaidi Mohd Shafri & Zed Zulkafli & Aimrun Wayayok, 2023. "A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention," IJERPH, MDPI, vol. 20(5), pages 1-22, February.
    5. Juan Crescenciano Cruz-Victoria & Alma Rosa Netzahuatl-Muñoz & Eliseo Cristiani-Urbina, 2024. "Long Short-Term Memory and Bidirectional Long Short-Term Memory Modeling and Prediction of Hexavalent and Total Chromium Removal Capacity Kinetics of Cupressus lusitanica Bark," Sustainability, MDPI, vol. 16(7), pages 1-25, March.
    6. Odey Alshboul & Ali Shehadeh & Ghassan Almasabha & Ali Saeed Almuflih, 2022. "Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    7. Frank Badu Osei & Alfred Stein & Anthony Ofosu, 2019. "Poisson-Gamma Mixture Spatially Varying Coefficient Modeling of Small-Area Intestinal Parasites Infection," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Engin Duran, 2025. "The future of urban hierearchy and Zipf law: ARIMA and BATS forecasting," Letters in Spatial and Resource Sciences, Springer, vol. 18(1), pages 1-14, December.
    2. Odey Alshboul & Ali Shehadeh & Rabia Emhamed Al Mamlook & Ghassan Almasabha & Ali Saeed Almuflih & Saleh Y. Alghamdi, 2022. "Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    3. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    4. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    5. Chun-Wei Chen, 2023. "A Feasibility Discussion: Is ML Suitable for Predicting Sustainable Patterns in Consumer Product Preferences?," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    6. Jue Tao Lim & Borame Sue Lee Dickens & Lawrence Zheng Xiong Chew & Esther Li Wen Choo & Joel Ruihan Koo & Joel Aik & Lee Ching Ng & Alex R Cook, 2020. "Impact of sars-cov-2 interventions on dengue transmission," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-17, October.
    7. Jurgita Raudeliuniene & Eva Trinkuniene & Aurelija Burinskiene & Raimonda Bubliene, 2025. "Application of Multi-Criteria Decision-Making Approach COPRAS for Developing Sustainable Building Practices in the European Region," Sustainability, MDPI, vol. 17(8), pages 1-26, April.
    8. Wei Cao & Zheng Wan & Wenjing Li, 2023. "Stability of Unsaturated Soil Slope Considering Stratigraphic Uncertainty," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
    9. Zihan Zhang & Wanjiang Wang & Junkang Song & Zhe Wang & Weiyi Wang, 2022. "Multi-Objective Optimization of Ultra-Low Energy Consumption Buildings in Severely Cold Regions Considering Life Cycle Performance," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    10. I. Gede Nyoman Mindra Jaya & Budhi Handoko & Yudhie Andriyana & Anna Chadidjah & Farah Kristiani & Mila Antikasari, 2023. "Multivariate Bayesian Semiparametric Regression Model for Forecasting and Mapping HIV and TB Risks in West Java, Indonesia," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    11. Chengguang Liu & Jiaqi Zhang & Xixi Luo & Yulin Yang & Chao Hu, 2023. "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    12. Laura Serra & Claudio Detotto & Pablo Juan & Marco Vannini, 2022. "Intersectoral and spatial spill-overs of firms’ bankruptcy in Spain," Letters in Spatial and Resource Sciences, Springer, vol. 15(2), pages 197-211, August.
    13. I Gede Nyoman Mindra Jaya & Henk Folmer, 2025. "Spatiotemporal forecasting models with and without a confounded covariate," Journal of Geographical Systems, Springer, vol. 27(1), pages 113-146, January.
    14. Hina Inam & Naeem Ul Islam & Muhammad Usman Akram & Fahim Ullah, 2023. "Smart and Automated Infrastructure Management: A Deep Learning Approach for Crack Detection in Bridge Images," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    15. Sathi Patra & Soovoojeet Jana & Sayani Adak & T. K. Kar, 2024. "A deep learning architecture using hybrid and stacks to forecast weekly dengue cases in Laos," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-16, August.
    16. Shaoliang Li & Xiazhong Zheng & Qin Zeng, 2023. "Can Green Finance Drive the Development of the Green Building Industry?—Based on the Evolutionary Game Theory," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    17. Zhaoyang Liu & Heqing Huang & Juha Siikamäki & Jintao Xu, 2024. "Area-Based Hedonic Pricing of Urban Green Amenities in Beijing: A Spatial Piecewise Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(5), pages 1223-1248, May.
    18. Laura Serra & Claudio Detotto & Marco Vannini, 2022. "Public lands as a mitigator of wildfire burned area using a spatio-temporal model applied in Sardinia," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 621-635, December.
    19. Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
    20. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6777-:d:1709933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.