IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1866-d1040202.html
   My bibliography  Save this article

Smart and Automated Infrastructure Management: A Deep Learning Approach for Crack Detection in Bridge Images

Author

Listed:
  • Hina Inam

    (College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Rawalpindi 44000, Pakistan)

  • Naeem Ul Islam

    (College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Rawalpindi 44000, Pakistan)

  • Muhammad Usman Akram

    (College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Rawalpindi 44000, Pakistan)

  • Fahim Ullah

    (School of Surveying and Built Environment, University of Southern Queensland, Springfield, QLD 4300, Australia)

Abstract

Artificial Intelligence (AI) and allied disruptive technologies have revolutionized the scientific world. However, civil engineering, in general, and infrastructure management, in particular, are lagging behind the technology adoption curves. Crack identification and assessment are important indicators to assess and evaluate the structural health of critical city infrastructures such as bridges. Historically, such critical infrastructure has been monitored through manual visual inspection. This process is costly, time-consuming, and prone to errors as it relies on the inspector’s knowledge and the gadgets’ precision. To save time and cost, automatic crack and damage detection in bridges and similar infrastructure is required to ensure its efficacy and reliability. However, an automated and reliable system does not exist, particularly in developing countries, presenting a gap targeted in this study. Accordingly, we proposed a two-phased deep learning-based framework for smart infrastructure management to assess the conditions of bridges in developing countries. In the first part of the study, we detected cracks in bridges using the dataset from Pakistan and the online-accessible SDNET2018 dataset. You only look once version 5 (YOLOv5) has been used to locate and classify cracks in the dataset images. To determine the main indicators (precision, recall, and mAP (0.5)), we applied each of the YOLOv5 s, m, and l models to the dataset using a ratio of 7:2:1 for training, validation, and testing, respectively. The mAP (Mean average precision) values of all the models were compared to evaluate their performance. The results show mAP values for the test set of the YOLOv5 s, m, and l as 97.8%, 99.3%, and 99.1%, respectively, indicating the superior performance of the YOLOv5 m model compared to the two counterparts. In the second portion of the study, segmentation of the crack is carried out using the U-Net model to acquire their exact pixels. Using the segmentation mask allocated to the attribute extractor, the pixel’s width, height, and area are measured and visualized on scatter plots and Boxplots to segregate different cracks. Furthermore, the segmentation part validated the output of the proposed YOLOv5 models. This study not only located and classified the cracks based on their severity level, but also segmented the crack pixels and measured their width, height, and area per pixel under different lighting conditions. It is one of the few studies targeting low-cost health assessment and damage detection in bridges of developing countries that otherwise struggle with regular maintenance and rehabilitation of such critical infrastructure. The proposed model can be used by local infrastructure monitoring and rehabilitation authorities for regular condition and health assessment of the bridges and similar infrastructure to move towards a smarter and automated damage assessment system.

Suggested Citation

  • Hina Inam & Naeem Ul Islam & Muhammad Usman Akram & Fahim Ullah, 2023. "Smart and Automated Infrastructure Management: A Deep Learning Approach for Crack Detection in Bridge Images," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1866-:d:1040202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Odey Alshboul & Ali Shehadeh & Ghassan Almasabha & Ali Saeed Almuflih, 2022. "Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    2. Chao Su & Wenjun Wang, 2020. "Concrete Cracks Detection Using Convolutional NeuralNetwork Based on Transfer Learning," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odey Alshboul & Ali Shehadeh & Rabia Emhamed Al Mamlook & Ghassan Almasabha & Ali Saeed Almuflih & Saleh Y. Alghamdi, 2022. "Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    2. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    3. Chun-Wei Chen, 2023. "A Feasibility Discussion: Is ML Suitable for Predicting Sustainable Patterns in Consumer Product Preferences?," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    4. Wei Cao & Zheng Wan & Wenjing Li, 2023. "Stability of Unsaturated Soil Slope Considering Stratigraphic Uncertainty," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
    5. Zihan Zhang & Wanjiang Wang & Junkang Song & Zhe Wang & Weiyi Wang, 2022. "Multi-Objective Optimization of Ultra-Low Energy Consumption Buildings in Severely Cold Regions Considering Life Cycle Performance," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    6. Chengguang Liu & Jiaqi Zhang & Xixi Luo & Yulin Yang & Chao Hu, 2023. "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    7. Shaoliang Li & Xiazhong Zheng & Qin Zeng, 2023. "Can Green Finance Drive the Development of the Green Building Industry?—Based on the Evolutionary Game Theory," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    8. Luka Gradišar & Matevž Dolenc, 2023. "Transfer and Unsupervised Learning: An Integrated Approach to Concrete Crack Image Analysis," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    9. Zhi-Jun Li & Kabiru Adamu & Kai Yan & Xiu-Li Xu & Peng Shao & Xue-Hong Li & Hafsat Muhammad Bashir, 2022. "Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques," Sustainability, MDPI, vol. 14(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1866-:d:1040202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.