IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6171-d1695246.html
   My bibliography  Save this article

Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management

Author

Listed:
  • Siyuan Shang

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yonghong Xu

    (Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China)

  • Hongguang Zhang

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Hao Zheng

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Fubin Yang

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yujie Zhang

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Shuo Wang

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yinlian Yan

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Jiabao Cheng

    (College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) model is proposed for dynamic hyper-parameter tuning, integrating multiple intelligent optimization algorithms (including PSO, genetic algorithm, whale optimization, and simulated annealing) to enhance the accuracy and generalization of battery state-of-health (SOH) estimation. The model dynamically adjusts SVR hyperparameters to better capture the nonlinear aging characteristics of batteries. We validate the approach using a publicly available NASA lithium-ion battery degradation dataset (cells B0005, B0006, B0007). Key health features are extracted from voltage–capacity curves (via incremental capacity analysis), and correlation analysis confirms their strong relationship with battery capacity. Experimental results show that the proposed IPSO-SVR model outperforms a conventional PSO-SVR benchmark across all three datasets, achieving higher prediction accuracy: a mean MAE of 0.611%, a mean RMSE of 0.794%, a mean MSE of 0.007%, and robustness a mean R 2 of 0.933. These improvements in SOH prediction not only ensure more reliable battery management but also support sustainable energy practices by enabling longer battery life spans and more efficient resource utilization.

Suggested Citation

  • Siyuan Shang & Yonghong Xu & Hongguang Zhang & Hao Zheng & Fubin Yang & Yujie Zhang & Shuo Wang & Yinlian Yan & Jiabao Cheng, 2025. "Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management," Sustainability, MDPI, vol. 17(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6171-:d:1695246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianyu Zhang & Kang Li, 2024. "State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review," Energies, MDPI, vol. 17(22), pages 1-16, November.
    2. Massimo Ceraolo & Giovanni Lutzemberger & Davide Poli & Claudio Scarpelli, 2021. "Experimental Evaluation of Aging Indicators for Lithium–Iron–Phosphate Cells," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Zhang, Hongguang & Zhang, Jian & Li, Qi, 2024. "Capacity estimation for lithium-ion batteries based on heterogeneous stacking model with feature fusion," Energy, Elsevier, vol. 313(C).
    2. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    3. Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
    4. Meng-Xiang Yan & Zhi-Hui Deng & Lianfeng Lai & Yong-Hong Xu & Liang Tong & Hong-Guang Zhang & Yi-Yang Li & Ming-Hui Gong & Guo-Ju Liu, 2025. "A Sustainable SOH Prediction Model for Lithium-Ion Batteries Based on CPO-ELM-ABKDE with Uncertainty Quantification," Sustainability, MDPI, vol. 17(11), pages 1-28, June.
    5. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    6. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
    7. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    8. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    9. Gu, Xin & Li, Jinglun & Zhu, Yuhao & Wang, Yue & Mao, Ziheng & Shang, Yunlong, 2023. "A quick and intelligent screening method for large-scale retired batteries based on cloud-edge collaborative architecture," Energy, Elsevier, vol. 285(C).
    10. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
    11. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    12. Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
    13. Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6171-:d:1695246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.