IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3828-d1704574.html
   My bibliography  Save this article

Capacity Forecasting of Lithium-Ion Batteries Using Empirical Models: Toward Efficient SOH Estimation with Limited Cycle Data

Author

Listed:
  • Kanchana Sivalertporn

    (Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand)

  • Piyawong Poopanya

    (Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand)

  • Teeraphon Phophongviwat

    (Department of Electrical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

Accurate prediction of lithium-ion battery capacity degradation is crucial for reliable state-of-health estimation and long-term performance assessment in battery management systems. This study presents an empirical modeling approach based on experimental data collected from four lithium iron phosphate (LFP) battery packs cycled over 75 to 100 charge–discharge cycles. Several mathematical models—including linear, quadratic, single-exponential, and double-exponential functions—were evaluated for their predictive accuracy. Among these, the linear and single-exponential models demonstrated strong performance in early-cycle predictions. It was found that using 30 to 40 cycles of data is sufficient for reliable forecasting within a 100-cycle range, reducing the mean absolute error by over 80% compared to using early-cycle data alone. Although these models provide reasonable short-term predictions, they fail to capture the nonlinear degradation behavior observed beyond 80 cycles. To address this, a modified linear model was proposed by introducing an exponentially decaying slope. The modified linear model offers improved long-term prediction accuracy and robustness, particularly when data availability is limited. Capacity forecasts based on only 40 cycles yielded results comparable to those using 100 cycles, demonstrating the model’s efficiency. End-of-life estimates based on the modified linear model align more closely with typical LFP specifications, whereas conventional models tend to underestimate the cycle life. The proposed model offers a practical balance between computational simplicity and predictive accuracy, making it well suited for battery health diagnostics.

Suggested Citation

  • Kanchana Sivalertporn & Piyawong Poopanya & Teeraphon Phophongviwat, 2025. "Capacity Forecasting of Lithium-Ion Batteries Using Empirical Models: Toward Efficient SOH Estimation with Limited Cycle Data," Energies, MDPI, vol. 18(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3828-:d:1704574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin-Hao Chen & Chen-Hsiang Hsieh & Li-Tao Teng & Chien-Chung Huang, 2023. "Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System," Energies, MDPI, vol. 16(11), pages 1-30, May.
    2. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    3. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    4. Jiwei Wang & Hao Li & Chunling Wu & Yujun Shi & Linxuan Zhang & Yi An, 2024. "State of Health Estimations for Lithium-Ion Batteries Based on MSCNN," Energies, MDPI, vol. 17(17), pages 1-21, August.
    5. Jianyu Zhang & Kang Li, 2024. "State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review," Energies, MDPI, vol. 17(22), pages 1-16, November.
    6. Zhang, Zhengjie & Cao, Rui & Zheng, Yifan & Zhang, Lisheng & Guang, Haoran & Liu, Xinhua & Gao, Xinlei & Yang, Shichun, 2024. "Online state of health estimation for lithium-ion batteries based on gene expression programming," Energy, Elsevier, vol. 294(C).
    7. Tang, Aihua & Wu, Xinyu & Xu, Tingting & Hu, Yuanzhi & Long, Shengwen & Yu, Quanqing, 2024. "State of health estimation based on inconsistent evolution for lithium-ion battery module," Energy, Elsevier, vol. 286(C).
    8. Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    9. Ibrahim B. Mansir & Paul C. Okonkwo, 2025. "Component Degradation in Lithium-Ion Batteries and Their Sustainability: A Concise Overview," Sustainability, MDPI, vol. 17(3), pages 1-24, January.
    10. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    2. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    3. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    4. Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
    5. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    6. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    7. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    8. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
    9. Sun, Rongli & Chen, Junsheng & Li, Benchuan & Piao, Changhao, 2025. "State of health estimation for Lithium-ion batteries based on novel feature extraction and BiGRU-Attention model," Energy, Elsevier, vol. 319(C).
    10. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
    11. Omid Rahbari & Noshin Omar & Joeri Van Mierlo & Marc A. Rosen & Thierry Coosemans & Maitane Berecibar, 2019. "Electric Vehicle Battery Lifetime Extension through an Intelligent Double-Layer Control Scheme," Energies, MDPI, vol. 12(8), pages 1-24, April.
    12. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    13. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    14. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    17. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    19. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
    20. Andrzej P. Nowak & Paweł Rutecki & Mariusz Szkoda & Konrad Trzciński, 2024. "Determination of Sodium Ion Diffusion Coefficient in Tin Sulfide@Carbon Anode Material Using GITT and EIS Techniques," Energies, MDPI, vol. 17(13), pages 1-11, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3828-:d:1704574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.