IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6119-d1694326.html
   My bibliography  Save this article

Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration

Author

Listed:
  • Yuzhou Zhang

    (Hubei Key Laboratory of Biological Resources Protection and Utilization of HuBei MinZu University, Enshi 445000, China)

  • Wanmei Zhao

    (Qinghai Provincial Institute of Territorial Space Planning, Xining 810000, China)

  • Jianxin Yang

    (School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China)

Abstract

Against the backdrop of global climate change and rapid urbanization, understanding the spatiotemporal dynamics and driving mechanisms of vegetation net primary productivity (NPP) is critical for ensuring regional ecological security and achieving carbon neutrality goals. This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA) and integrates multi-source remote sensing data with socioeconomic statistics. By combining interpretable machine learning (XGBoost-SHAP) with multiscale geographically weighted regression (MGWR), and incorporating Theil–Sen trend analysis and Mann–Kendall significance testing, we systematically analyze the spatiotemporal variations in NPP and its multiscale driving mechanisms from 2001 to 2020. The results reveal the following: (1) Total NPP in the YRDUA shows an increasing trend, with approximately 24.83% of the region experiencing a significant rise and only 2.75% showing a significant decline, indicating continuous improvement in regional ecological conditions. (2) Land use change resulted in a net NPP loss of 2.67 TgC, yet ecological restoration and advances in agricultural technology effectively mitigated negative impacts and became the main contributors to NPP growth. (3) The results from XGBoost and MGWR are complementary, highlighting the scale-dependent effects of driving factors—at the regional scale, natural factors such as elevation (DEM), precipitation (PRE), and vegetation cover (VFC) have positive impacts on NPP, while the human footprint (HF) generally exerts a negative effect. However, in certain areas, a dose–response effect is observed, in which moderate human intervention can enhance ecological functions. (4) The spatial heterogeneity of NPP is mainly driven by nonlinear interactions between natural and anthropogenic factors. Notably, the interaction between DEM and climatic variables exhibits threshold responses and a “spatial gradient–factor interaction” mechanism, where the same driver may have opposite effects under different geomorphic conditions. Therefore, a well-balanced combination of land use transformation and ecological conservation policies is crucial for enhancing regional ecological functions and NPP. These findings provide scientific support for ecological management and the formulation of sustainable development strategies in urban agglomerations.

Suggested Citation

  • Yuzhou Zhang & Wanmei Zhao & Jianxin Yang, 2025. "Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 17(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6119-:d:1694326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza, Robert & Fisher, Brendan & Mulder, Kenneth & Liu, Shuang & Christopher, Treg, 2007. "Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production," Ecological Economics, Elsevier, vol. 61(2-3), pages 478-491, March.
    2. Zhenfeng Wei & Dong Chen & Qunying Huang & Qifeng Chen & Chunxia Wei, 2025. "Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region," Sustainability, MDPI, vol. 17(8), pages 1-20, April.
    3. Jianshu Li & Mo Bi & Guoen Wei, 2022. "Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships," Land, MDPI, vol. 11(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alena J. Raymond & James R. Tipton & Alissa Kendall & Jason T. DeJong, 2020. "Review of impact categories and environmental indicators for life cycle assessment of geotechnical systems," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 485-499, June.
    2. Elena Ojea & Paulo Nunes & Maria Loureiro, 2010. "Mapping Biodiversity Indicators and Assessing Biodiversity Values in Global Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(3), pages 329-347, November.
    3. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    4. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    5. Paulo A.L.D. Nunes & Elena Ojea & Maria Loureiro, 2009. "Mapping of Forest Biodiversity Values: A Plural Perspective," Working Papers 2009.4, Fondazione Eni Enrico Mattei.
    6. Tao Long & Yonghong Wang & Yunchao Jiang & Yun Zhang & Bo Wang, 2025. "Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023," Sustainability, MDPI, vol. 17(13), pages 1-21, June.
    7. Ramel, Cindy & Rey, Pierre-Louis & Fernandes, Rui & Vincent, Claire & Cardoso, Ana R. & Broennimann, Olivier & Pellissier, Loïc & Pradervand, Jean-Nicolas & Ursenbacher, Sylvain & Schmidt, Benedikt R., 2020. "Integrating ecosystem services within spatial biodiversity conservation prioritization in the Alps," Ecosystem Services, Elsevier, vol. 45(C).
    8. Houdet, Joël & Trommetter, Michel & Weber, Jacques, 2012. "Understanding changes in business strategies regarding biodiversity and ecosystem services," Ecological Economics, Elsevier, vol. 73(C), pages 37-46.
    9. Kaur, Harpaljit & Habibullah, Muzafar & Nagaratnam, Shalini, 2019. "Impact of Natural Disasters on Biodiversity: Evidence Using Quantile Regression Approach," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(2), pages 67-81.
    10. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    11. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    12. Xiao Hu & Yujie He & Ze Kong & Jiang Zhang & Minshu Yuan & Le Yu & Changhui Peng & Qiuan Zhu, 2021. "Evaluation of Future Impacts of Climate Change, CO 2 , and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model," Land, MDPI, vol. 10(4), pages 1-16, April.
    13. Zhongwei Guo & Lin Zhang & Yiming Li, 2010. "Increased Dependence of Humans on Ecosystem Services and Biodiversity," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-8, October.
    14. Susaeta, Andres & Gutiérrez, Ester & Lozano, Sebastián, 2023. "Profit-efficiency analysis of forest ecosystem services in the southeastern US," Ecosystem Services, Elsevier, vol. 64(C).
    15. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    16. Enrique Acebo & José‐Ángel Miguel‐Dávila & Mariano Nieto, 2021. "External stakeholder engagement: Complementary and substitutive effects on firms' eco‐innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2671-2687, July.
    17. Divinsky, Itai & Becker, Nir & Bar (Kutiel), Pua, 2017. "Ecosystem service tradeoff between grazing intensity and other services - A case study in Karei-Deshe experimental cattle range in northern Israel," Ecosystem Services, Elsevier, vol. 24(C), pages 16-27.
    18. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    19. CHEN, Running & PENG, Yisong & REN, Qiang & WU, Jiayu, 2025. "Optimizing global protected areas to address future land use threats to biodiversity," Land Use Policy, Elsevier, vol. 154(C).
    20. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6119-:d:1694326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.