IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5718-d1684234.html
   My bibliography  Save this article

Potential Expansion of Low-Carbon Liquid Fuel Production Using Hydrogen-Enhanced Biomass/Municipal Solid Waste Gasification

Author

Listed:
  • Mohammad Ostadi

    (Department of Energy, Aalborg University, 6700 Esbjerg, Denmark)

  • Daniel R. Cohn

    (MIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

  • Guiyan Zang

    (MIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

  • Leslie Bromberg

    (MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

Abstract

Low-carbon liquid fuels are needed for decarbonization of hard-to-decarbonize segments of the transportation sector. This decarbonization can be limited by the amount of renewable carbon. Thermochemical conversion of biomass/municipal solid waste (MSW) through gasification is a promising route for producing low-carbon fuels. There are two major opportunities for increasing the amount of low-carbon liquid fuel that can be produced from gasification in any region. One is to increase the amount of liquid fuel from a given amount of biomass/MSW, particularly by hydrogen-enhancement of gasification synthesis gas. Second is the potential for large expansion of use of biomass feedstocks from its present level. Such biomass feedstocks include agricultural waste, forestry waste, MSW, and specially grown biomass that does not interfere with food production. The use of MSW may provide advantages of an established network for pickup and transportation of feedstock to disposal sites and the avoidance of methane produced from landfilling of MSW. As a case study, we looked at potential expansion of US low-carbon fuel production, considering the recent projections of the 2024 USDOE report, which estimated potential production of a billion tons/yr of biomass/MSW feedstocks in the US. This report included an estimated potential for liquid biofuel production of 60 billion gallons/yr of diesel energy equivalent fuel without the use of hydrogen enhancement. By hydrogen-enhanced biomass/MSW gasification, this projection could be doubled to 120 billion gallons/yr of diesel energy equivalent fuel. Furthermore, the co-location potential of biomass/MSW resources with potential renewable energy generation sites is explored. This overlap of hydrogen production and biomass production in the US are located in regions such as the US Midwest, Texas, and California. This co-location strategy enhances logistical feasibility, reducing transport costs and optimizing energy system integration; and can be applied to other geographical locations. Hydrogen-enhanced biomass/MSW gasification offers a promising route to substantially increase low-carbon liquid fuel production (e.g., methanol) and support increased liquid fuel production and greenhouse gas reduction goals.

Suggested Citation

  • Mohammad Ostadi & Daniel R. Cohn & Guiyan Zang & Leslie Bromberg, 2025. "Potential Expansion of Low-Carbon Liquid Fuel Production Using Hydrogen-Enhanced Biomass/Municipal Solid Waste Gasification," Sustainability, MDPI, vol. 17(13), pages 1-11, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5718-:d:1684234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koponen, Kati & Hannula, Ilkka, 2017. "GHG emission balances and prospects of hydrogen enhanced synthetic biofuels from solid biomass in the European context," Applied Energy, Elsevier, vol. 200(C), pages 106-118.
    2. Hannula, Ilkka, 2016. "Hydrogen enhancement potential of synthetic biofuels manufacture in the European context: A techno-economic assessment," Energy, Elsevier, vol. 104(C), pages 199-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannula, I. & Reiner, D., 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Cambridge Working Papers in Economics 1758, Faculty of Economics, University of Cambridge.
    2. Onarheim, Kristin & Hannula, Ilkka & Solantausta, Yrjö, 2020. "Hydrogen enhanced biofuels for transport via fast pyrolysis of biomass: A conceptual assessment," Energy, Elsevier, vol. 199(C).
    3. Lindroos, Tomi J. & Mäki, Elina & Koponen, Kati & Hannula, Ilkka & Kiviluoma, Juha & Raitila, Jyrki, 2021. "Replacing fossil fuels with bioenergy in district heating – Comparison of technology options," Energy, Elsevier, vol. 231(C).
    4. Chiaramonti, David & Goumas, Theodor, 2019. "Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    6. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    7. Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
    8. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    9. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Jeremiáš, M. & Pohořelý, M. & Svoboda, K. & Skoblia, S. & Beňo, Z. & Šyc, M., 2018. "CO2 gasification of biomass: The effect of lime concentration in a fluidised bed," Applied Energy, Elsevier, vol. 217(C), pages 361-368.
    11. Anetjärvi, Eemeli & Vakkilainen, Esa & Melin, Kristian, 2023. "Benefits of hybrid production of e-methanol in connection with biomass gasification," Energy, Elsevier, vol. 276(C).
    12. Nicolaus Dahmen & Johannes Abeln & Mark Eberhard & Thomas Kolb & Hans Leibold & Jörg Sauer & Dieter Stapf & Bernd Zimmerlin, 2017. "The bioliq process for producing synthetic transportation fuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    13. Goffé, Jonathan & Ferrasse, Jean-Henry, 2019. "Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels," Energy, Elsevier, vol. 170(C), pages 438-458.
    14. Sorknæs, P. & Lund, Henrik & Skov, I.R. & Djørup, S. & Skytte, K. & Morthorst, P.E. & Fausto, F., 2020. "Smart Energy Markets - Future electricity, gas and heating markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Frank K. Radosits & Amela Ajanovic & Michael Harasek, 2024. "The relevance of biomass‐based gases as energy carriers: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    16. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Hani Hussain Sait & Ahmed Hussain & Mohamed Bassyouni & Imtiaz Ali & Ramesh Kanthasamy & Bamidele Victor Ayodele & Yasser Elhenawy, 2022. "Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds," Energies, MDPI, vol. 15(8), pages 1-13, April.
    18. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    19. Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
    20. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5718-:d:1684234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.