IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5147-d1671299.html
   My bibliography  Save this article

A Connectivity-Based Outlier Factor Method for Rapid Battery Internal Short-Circuit Diagnosis

Author

Listed:
  • Zhiguo Dong

    (National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China)

  • Gongqiang Li

    (National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China)

  • Fengxiang Xie

    (National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China)

  • Shiwen Zhao

    (School of Control Science and Engineering, Shandong University, Jinan 250100, China)

  • Xiaofan Ji

    (National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China)

  • Mofan Tian

    (National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China)

  • Kailong Liu

    (School of Control Science and Engineering, Shandong University, Jinan 250100, China)

Abstract

Internal short-circuit (ISC) is a critical failure mode in lithium-ion (Li-ion) batteries that can trigger thermal runaway and pose serious risks to both environmental and human safety. Early-stage ISC faults are particularly challenging to detect due to their subtle characteristics and the masking effects of voltage fluctuations. To address these challenges, this study proposes a rapid and accurate ISC diagnosis method based on the connectivity-based outlier factor (COF) algorithm. The key innovation lies in the preprocessing of terminal voltage to amplify fault signatures and suppress natural fluctuations, thereby enhancing sensitivity to early anomalies. The COF algorithm is then applied to identify ISC faults in real time. Validation under urban-dynamometer driving schedule (UDDS) conditions demonstrates the method’s effectiveness: it successfully detects early ISC faults with an equivalent resistance as high as 100 Ω within 207 s of onset. This unsupervised, data-driven approach improves fault detection speed and accuracy, contributing to the advancement of safe, reliable, and sustainable LIB deployment in clean energy and transportation systems.

Suggested Citation

  • Zhiguo Dong & Gongqiang Li & Fengxiang Xie & Shiwen Zhao & Xiaofan Ji & Mofan Tian & Kailong Liu, 2025. "A Connectivity-Based Outlier Factor Method for Rapid Battery Internal Short-Circuit Diagnosis," Sustainability, MDPI, vol. 17(11), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5147-:d:1671299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiao, Dongdong & Wang, Xueyuan & Lai, Xin & Zheng, Yuejiu & Wei, Xuezhe & Dai, Haifeng, 2022. "Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method," Energy, Elsevier, vol. 243(C).
    2. Zhifu Wang & Wei Luo & Song Xu & Yuan Yan & Limin Huang & Jingkai Wang & Wenmei Hao & Zhongyi Yang, 2023. "Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    3. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean & Jiao, Zhipeng, 2024. "Fault diagnosis of early internal short circuit for power battery systems based on the evolution of the cell charging voltage slope in variable voltage window," Applied Energy, Elsevier, vol. 376(PB).
    4. Song, Youngbin & Park, Shina & Kim, Sang Woo, 2023. "Model-free quantitative diagnosis of internal short circuit for lithium-ion battery packs under diverse operating conditions," Applied Energy, Elsevier, vol. 352(C).
    5. Xu, Yiming & Ge, Xiaohua & Shen, Weixiang, 2024. "Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles," Applied Energy, Elsevier, vol. 362(C).
    6. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Xiong, Rui & Sun, Xinjie & Meng, Xiangfeng & Shen, Weixiang & Sun, Fengchun, 2024. "Advancing fault diagnosis in next-generation smart battery with multidimensional sensors," Applied Energy, Elsevier, vol. 364(C).
    8. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    9. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    10. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    11. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    12. Liu, Kailong & Fang, Jingyang & Zhao, Shiwen & Liu, Yuhang & Dai, Haifeng & Ye, Liwang & Peng, Qiao, 2025. "Battery state-of-health estimation: An ultrasonic detection method with explainable AI," Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuowei & Zhang, Caiping & Du, Jingcai & Zhang, Linjing & Jiang, Yan, 2025. "Feature engineering-driven multi-scale voltage anomaly detection for Lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 377(PC).
    2. Gao, Renjing & Liang, Hong & Zhang, Yunfei & Zhao, Haihe & Chen, Zeyu, 2024. "Characterization of lithium-ion batteries after suffering micro short circuit induced by mechanical stress abuse," Applied Energy, Elsevier, vol. 374(C).
    3. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    4. Yang, Qifan & Sun, Jinlei & Kang, Yongzhe & Ma, Hongzhong & Duan, Dawei, 2023. "Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model," Energy, Elsevier, vol. 276(C).
    5. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean & Jiao, Zhipeng, 2024. "Fault diagnosis of early internal short circuit for power battery systems based on the evolution of the cell charging voltage slope in variable voltage window," Applied Energy, Elsevier, vol. 376(PB).
    6. Hou, Liubin & Dong, Ao & Ma, Ruifei & Lin, Hejie & Deng, Yelin, 2024. "The sensitive detection of the early-stage internal short circuit triggered by lithium plating through the simplified electrochemical model at various working conditions," Energy, Elsevier, vol. 304(C).
    7. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    8. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    9. Xu, Yiming & Ge, Xiaohua & Guo, Ruohan & Shen, Weixiang, 2025. "Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    10. Zhang, Zhao & Ma, Jian & Ma, Yucheng & Gong, Xianwu & Xiangli, Kang & Zhao, Xuan, 2025. "Battery abnormality detection based on important sample selection for large-scale vehicle monitoring," Applied Energy, Elsevier, vol. 388(C).
    11. Yang, Qifan & Yu, Zhiguo & Liu, Yiqing & Kang, Yongzhe, 2025. "High-reliability multi-fault diagnosis of lithium-ion batteries based on low-redundancy cross-measurement and affine transformation," Energy, Elsevier, vol. 318(C).
    12. Yu, Kun & Liu, Peng & Xu, Bin & Li, Jinzhong & Wang, Xinyu & Zhang, Heng & Mao, Lei, 2025. "Warning lithium-ion battery thermal runaway with 4-min relaxation voltage," Applied Energy, Elsevier, vol. 377(PA).
    13. Song, Youngbin & Park, Shina & Kim, Sang Woo, 2023. "Model-free quantitative diagnosis of internal short circuit for lithium-ion battery packs under diverse operating conditions," Applied Energy, Elsevier, vol. 352(C).
    14. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    15. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    16. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    17. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    18. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    19. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    20. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5147-:d:1671299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.