IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4967-d1666698.html
   My bibliography  Save this article

Post-Disaster Recovery Assessment Using Sentiment Analysis of English-Language Tweets: A Tenth-Anniversary Case Study of the 2010 Haiti Earthquake

Author

Listed:
  • Diana Contreras

    (School of Earth and Environmental Sciences, Cardiff University, Cardiff CF10 3AT, UK)

  • Dimosthenis Antypas

    (School of Computer Sciences, Cardiff University, Cardiff CF24 4A, UK)

  • Javier Hervas

    (Independent Researcher, Cardiff CF10 2HS, UK)

  • Sean Wilkinson

    (School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Jose Camacho-Collados

    (School of Computer Sciences, Cardiff University, Cardiff CF24 4A, UK)

  • Philippe Garnier

    (AE&CC Research Unit, CRAterre Research Lab, École Nationale Supérieure d’Architecture de Grenoble, Université Grenoble Alpes, 12636 Grenoble, France)

  • Cécile Cornou

    (ISTerre, IRD, Université Grenoble Alpes, 38000 Grenoble, France)

Abstract

The 2010 Haiti earthquake stands as one of the most catastrophic events in terms of loss of life and destruction. Following an earthquake, there is an urgent demand for information. Regrettably, few studies have tracked the progress of the post-disaster recovery, leaving this phase poorly understood. In previous years, data were exclusively collected through on-site missions, but today, social media (SM) has enhanced earthquake reconnaissance teams’ capacity to collect data beyond the emergency phase. However, text data from SM is unstructured, making it necessary to use natural language processing techniques to extract meaningful information. Sentiment analysis (SA), which classifies people’s opinions into positive, negative, or neutral polarity, is a promising tool for understanding earthquake recovery. For the purposes of this paper, we conduct SA at the tweet level on data collected around the tenth anniversary of the earthquake using human expertise to fine-tune automatic classification methods. We conclude that the anniversary date is the best time to collect data. In our sample, 56.3% of the tweets in the sample were classified as negative, followed by positive (27.3%), neutral (8.2%), and unrelated (8.1%). In our study, we conclude that the assessment of the recovery progress based on data collected from Twitter is negative. The automatic method for SA with the highest accuracy is ‘btweet’. The assessment result must be validated by stakeholders.

Suggested Citation

  • Diana Contreras & Dimosthenis Antypas & Javier Hervas & Sean Wilkinson & Jose Camacho-Collados & Philippe Garnier & Cécile Cornou, 2025. "Post-Disaster Recovery Assessment Using Sentiment Analysis of English-Language Tweets: A Tenth-Anniversary Case Study of the 2010 Haiti Earthquake," Sustainability, MDPI, vol. 17(11), pages 1-32, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4967-:d:1666698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon, Tomer & Goldberg, Avishay & Adini, Bruria, 2015. "Socializing in emergencies—A review of the use of social media in emergency situations," International Journal of Information Management, Elsevier, vol. 35(5), pages 609-619.
    2. Hongzhou Shen & Yue Ju & Zhijing Zhu, 2023. "Extracting Useful Emergency Information from Social Media: A Method Integrating Machine Learning and Rule-Based Classification," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    3. Laura Zanotti, 2010. "Cacophonies of Aid, Failed State Building and s in Haiti: setting the stage for disaster, envisioning the future," Third World Quarterly, Taylor & Francis Journals, vol. 31(5), pages 755-771.
    4. Yates, Dave & Paquette, Scott, 2011. "Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake," International Journal of Information Management, Elsevier, vol. 31(1), pages 6-13.
    5. Ragini, J. Rexiline & Anand, P.M. Rubesh & Bhaskar, Vidhyacharan, 2018. "Big data analytics for disaster response and recovery through sentiment analysis," International Journal of Information Management, Elsevier, vol. 42(C), pages 13-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Zi-jian & Rong, Lili & Wang, Ning & Cao, Shuo, 2019. "Knowledge model for emergency response based on contingency planning system of China," International Journal of Information Management, Elsevier, vol. 46(C), pages 10-22.
    2. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.
    3. Elbanna, Amany & Bunker, Deborah & Levine, Linda & Sleigh, Anthony, 2019. "Emergency management in the changing world of social media: Framing the research agenda with the stakeholders through engaged scholarship," International Journal of Information Management, Elsevier, vol. 47(C), pages 112-120.
    4. Umar Ali Bukar & Fatimah Sidi & Marzanah A. Jabar & Rozi Nor Haizan Nor & Salfarina Abdullah & Iskandar Ishak & Mustafa Alabadla & Ali Alkhalifah, 2022. "How Advanced Technological Approaches Are Reshaping Sustainable Social Media Crisis Management and Communication: A Systematic Review," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    5. Martínez-Rojas, María & Pardo-Ferreira, María del Carmen & Rubio-Romero, Juan Carlos, 2018. "Twitter as a tool for the management and analysis of emergency situations: A systematic literature review," International Journal of Information Management, Elsevier, vol. 43(C), pages 196-208.
    6. Son, Jaebong & Lee, Hyung Koo & Jin, Sung & Lee, Jintae, 2019. "Content features of tweets for effective communication during disasters: A media synchronicity theory perspective," International Journal of Information Management, Elsevier, vol. 45(C), pages 56-68.
    7. Jamali, Mehdi & Nejat, Ali & Ghosh, Souparno & Jin, Fang & Cao, Guofeng, 2019. "Social media data and post-disaster recovery," International Journal of Information Management, Elsevier, vol. 44(C), pages 25-37.
    8. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    9. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    10. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    11. Trenton Alma Williams & Dean A. Shepherd, 2021. "Bounding and Binding: Trajectories of Community-Organization Emergence Following a Major Disruption," Organization Science, INFORMS, vol. 32(3), pages 824-855, May.
    12. Zhao, Dingtao & Wang, Feng & Wei, Jiuchang & Liang, Liang, 2013. "Public reaction to information release for crisis discourse by organization: Integration of online comments," International Journal of Information Management, Elsevier, vol. 33(3), pages 485-495.
    13. S M Nadim Sultan & Keshav Lall Maharjan, 2022. "Cyclone-Induced Disaster Loss Reduction by Social Media: A Case Study on Cyclone Amphan in Koyra Upazila, Khulna District, Bangladesh," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    14. Abhinav Kumar & Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana, 2022. "A deep multi-modal neural network for informative Twitter content classification during emergencies," Annals of Operations Research, Springer, vol. 319(1), pages 791-822, December.
    15. Pogrebnyakov, Nicolai & Maldonado, Edgar, 2018. "Didn’t roger that: Social media message complexity and situational awareness of emergency responders," International Journal of Information Management, Elsevier, vol. 40(C), pages 166-174.
    16. Abhilash Kondraganti & Gopalakrishnan Narayanamurthy & Hossein Sharifi, 2024. "A systematic literature review on the use of big data analytics in humanitarian and disaster operations," Annals of Operations Research, Springer, vol. 335(3), pages 1015-1052, April.
    17. Sarah Gardiner & Jinyan Chen & Margarida Abreu Novais & Karine Dupré & J. Guy Castley, 2023. "Analyzing and Leveraging Social Media Disaster Communication of Natural Hazards: Community Sentiment and Messaging Regarding the Australian 2019/20 Bushfires," Societies, MDPI, vol. 13(6), pages 1-20, May.
    18. Bo Yang & Yue Hu & Xusen Cheng & Ying Bao & Wenjing Chen, 2023. "Exploring the factors affecting content dissemination through WeChat official accounts: a heuristic-systematic model perspective," Electronic Commerce Research, Springer, vol. 23(4), pages 2713-2735, December.
    19. Wenwen Zhang & Camille Barchers & Janille Smith-Colin, 2023. "Transit communication via Twitter during the COVID-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1244-1261, June.
    20. Siqing Shan & Xijie Ju & Yigang Wei & Xin Wen, 2022. "Concerned or Apathetic? Using Social Media Platform (Twitter) to Gauge the Public Awareness about Wildlife Conservation: A Case Study of the Illegal Rhino Trade," IJERPH, MDPI, vol. 19(11), pages 1-21, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4967-:d:1666698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.